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There are two simple formulas for estimating the size of the forces during a climbing fall. 
The first is the well-known impact force formula for a fix-point belay [1-4]. That is, the 
rope brake is directly attached to the belay and in case of a fall of the climber it is more 
or less motionless. In popular presentations this impact force formula is still used to 
calculate the appearing forces during a climbing fall. But this formula does not take into 
account that the common belay method in sport climbing is a static rope brake attached to 
the belayer’s harness, but the belayer can move freely. 
In the following, this new impact force formula [5] which has to be applied in the latter 
case of a moving belayer is derived and compared with the formula for the fix-point 
situation. Furthermore, these formulas are applied to estimate the size of the forces 
appearing in a climbing fall using only climbing rope data of the manufacturers which are 
accessible for everyone. 
 
Let’s at first recapitulate the static impact force formula with a fix-point belay. To keep it 
simple, we only use the principle of conservation of energy to avoid the equations of 
motions and we assume that the rope obeys Hooke’ law. The situation is presented in Fig. 
1 with a fixed belay at B (x0 always zero). 
 

 

 
 
Figure1. A belayer B of mass m0 is attached to a climber C with mass m1  

who fell a distance h and has the velocity ghv 2)0(1    at P1 where the  

rope begins to stretch. The motion of B is described by the coordinate x0,  
C by the coordinate x1.  

 
 
At any time the initial kinetic energy K0 of the falling climber must be equal to the sum of 
his remaining kinetic energy K1, his lower gravitational potential energy Ug and the elastic 
energy Us of the stretched rope. Hooke’s law states that the restoring spring force F is 
proportional to the elongation x1 of the rope. Such a linear force-elongation relationship 
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leads to a quadratic potential spring energy (force times displacement!) stored in the 
spring. Setting up the balance equation for the conservation of energy, one obtains: 
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and explicitly 
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with 
 
m1 as the mass of the climber, 
v1(0) as the initial velocity of the climber at the time when the rope begins to stretch after 
falling a height h (see Figure 1), 
v1(t) as the velocity of the climber during the fall after the rope began to stretch, 
x1(t) as the elongation of the rope, 
g as the gravitational acceleration constant and  
k as the spring constant. 
 
It is important to realize that the spring constant k is a function of the paid-out rope 
length L as well as a function of the cross sectional area A of the rope. This is easy to 
understand, because a longer rope can be stretched more easily than a shorter one 
resulting in a smaller spring constant. On the other hand it is more difficult to stretch a 
thicker rope.  Therefore it is useful to write k in terms of the more fundamental elasticity 
modulus E which is only dependent on the rope material which leads to 
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Expressing )0(1v  in terms of h, one obtains ghv 2)0(1  .  h is often replaced by the fall 

factor f=h/L. The maximum force Fmax occurs at maximum elongation xmax=Fmax/k at the 
turning point of the rope. At that point, the velocity of the climber is zero, that is v1=0. 
Using all this, equation (1) changes to 
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Solving for Fmax, one gets the well-known impact force formula 
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With the available values of the UIAA standard fall ( normFmax  between 7.6kN and 9.5kN 

depending on the type and brand of the rope, fnorm =1.77 and mnorm = 80kg, one can 
calculate EA of a rope 
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which varies between 16.1kN and 26.5kN. Note that EA is the dynamic elastic modulus 
which is larger (that is stiffer) than the static modulus. If one uses the above values of EA, 



 

www.SigmaDeWe.com © 2022 Ulrich Leuthäusser page 3 

the static elongation  EAgmnorm  lies between 3% and 5%, much lower than the observed 6-

8%. That’s why more complicated viscoelastic rope models like the SLS model [6] are 
applied. Introducing more parameters, however, does not explain the physics of this 
difference between the dynamic and static elastic modulus.  
 

For larger falls, i.e. for gmfEA 12  , equation (4) is approximately given by 
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This is good news. Fmax increases only with the square root of f. But let’s plug in some 
numbers. For a typical sport climbing fall where the feet of the climbers are close to the 
last bolt, one has a fall height of about 2 meters. For a paid-out rope length of 10m the 

fall factor is f=0.2 leading to 33.0normff . For a rope length of 5m one has 

5.0normff .  

Assuming that m1 is about equal to mnorm, the maximum force in a typical fall lies between 
1/3 and 1/2 of the UIAA norm fall, that is between 2.8kN and 4.2kN . This is still a large 
number of 4-6 climber weights. The force on the last bolt or the last protection point 
which has to hold the fall is about 2 times the impact force. 5.6kN - 8.4kN is no problem 
for a modern bolt. For a small BD Camalot, however, it is. In a documented long climbing 
fall in a multi-pitch route in the Dolomites, a chain reaction of several failing protection 
points happened. The fall had a fall factor f about 0.4. The first failing protection point 
was a Camalot 0.3 which was deformed and pulled out.   
Thus, the forces that appear during relatively small climbing falls should not be 
underestimated. 
 
Considering now a movable belayer, we start as before with the equation of conservation 
of energy and include the motion of the belayer 
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with 
 
m0 as the mass of the belayer, 
v0(t) as the velocity of the belayer during the fall, 
x0(t) as the distance of the belayer from the ground with x0(0)=0. 
x1(t) as the distance of the climber from P1 (see Fig. 1). 
 
For an immobile belayer (v0(t)=0 and x0(t)=0), the old equation (1) is regained. Expressing 

x0 and x1 by the relative coordinate 01 xxd    and the center of mass coordinate 
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By means of the equations (7), x0 and x1 in equation (6) are replaced by d and xc. After 
some calculations one finds 
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where the reduced mass 
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and vd as the velocity of the relative coordinate d have been introduced. d describes the 
elongation of the rope and thus its restoring force. In equation (8) there is no coupling 
between xc and d so that the energy of the center of mass system (the first two terms) is 
separated from an oscillator with mass mr with a gravitational constant 2g.  Because the 
center of mass motion is independent of the relative motion for all times, the initial 

energy of the relative motion is given by 2
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vmvm rdr  . The energy conservation 

equation for the relative motion is therefore 
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At the turning point with vd(t)=0 one has  
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and with ghv 2)0(1   and maxmax
ˆ1
F

k
d   follows 
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The only difference between the equations (3) and (11) is the replacement of m1 by the 

reduced mass mr and a factor 2 in max
ˆ2 Fgmr because gravity pulls on the climber as well as 

on the belayer. The solution of equation (11) is  
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This equation is not quite correct, because this simple calculation does not exclude that 
the belayer’s position can never be negative (i.e. below the floor). This constraint which 
prevents this downward motion has been discussed in length in [5] where it is shown that 
equation (12) is a very good approximation for all reasonable mass ratios m0/m1. For larger 

falls i.e. for gmfEA r2  a simple relationship between maxF̂  and Fmax results 
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using gfEAmF 1max 2  and  gfEAmF r2m̂ax  . A small m0 leads to low maxmax
ˆ FF  ratios. 

The price which has to be paid is a large x1 with the danger that the climber hits the 

ground. For equal masses the ratio is 71.021  . Thus the force reduction of the movable 
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belayer method is about 30% for large falls. Typically, the position of the belayer is not 
directly below the climber respectively below the first protection point but has a certain 
offset with an angle α. In this case, m0 has to be multiplied with cos α which additionally 
reduces mr. 
 

If the belayer jumps off the ground with velocity v0(0), the difference )0()0( 01 vv   enters 

equation (12) which is changed to 
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Assuming that the movable belayer hits the start time exactly, he can reduce maxF̂  by an 

additional factor  )0()0(1 10 vv . If the belayer jumps with a velocity of )0(0v ~2.5m/sec 

from the ground (this corresponds to a height of 30cm of a person jumping upwards) at the 

beginning of a fall of 2m ( )0(1v ~6.3m/sec) an additional 40% force reduction is gained. All 

together there is a remaining force of ca. 40% compared to the force for a fixed belay. 

Also the opposite sign of )0(0v  is possible: dangerously large forces can appear when the 

belayer moves quickly backwards during the climber’s fall. 
 
In summary, to get an idea of the forces appearing in a climbing fall, two simple formulas 
are presented which depend on the belay method.  
For a fixed- point belay even small falls which happen all the time in sport climbing cause 
relatively large forces of about one third of the UIAA norm impact force, still several 
climber masses times g. In multi-pitch routes with small mobile protection devices this can 
be already a problem.  
It has also been shown how the impact force with a movable and active belayer has to be 
calculated and that this belay method significantly reduces the impact forces. 
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