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Abstract 
 
In sport climbing, a common method of belaying is to use a static rope brake attached to 
the belayer’s harness, but the belayer can move freely. 
This paper investigates the dynamics of a climbing fall with such a belayer. The dynamics 
are nontrivial because of the belayer’s constraint to be always at or above his initial 
position. An exact solution for a linear elastic rope is presented. 
Compared to a fix-point belay, one obtains a considerable force reduction on the belay-
chain. However, there is a trade-off of a longer stopping distance of both climber and 
belayer.  
In order to calculate the stopping distance, friction between rope and the top carabiner 
has been taken into account. Closed-form formulas allow for calculating the maximum 
impact force, as well as the minimum mass of the belayer which is necessary to hold a fall 
from a certain height.    
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Introduction 
 
A climbing fall exerts considerable forces on the belay chain, consisting of the climber, 
protection points, rope and belayer. Several belay techniques are available, depending on 
the attachment of the belay device and its dynamic behavior. The selected technique 
strongly influences the motion of the climber and belayer during the fall, as well as the 
resulting forces. Thus, knowing their size in relation to the applied belay technique is of 
great importance for climbing safety. 
 
In the simplest physical model, the climbing rope is treated as a linear frictionless 
oscillator. With this model, the maximum restoring force of the rope, sometimes called 
impact force, and its maximum elongation can be simply calculated [1,2]. More 
complicated models take into account the viscoelastic behavior of the rope [3,4], as well 
as the non-linearity of its force-elongation curve [4]. In this context, the fast elongation of 
the rope has to be treated thermodynamically as an adiabatic process [4]. As a 
consequence, dissipation is small up to almost the maximum force. The frictionless linear 
oscillator model is therefore an acceptable approximation of the maximum force on the 
rope. 
 
In the above models, a static fix-point belay is generally assumed, that is, the rope is 
attached to a fixed anchor. While this scenario corresponds to the laboratory conditions of 
the UIAA standard fall, this scenario is not consistent with the normal climbing practice. In 
sport climbing, the majority of belayers use a body belay with a device like the Grigri, 
Click-up, Mega Jul or similar device which is attached to the harness. These devices are 
auto-locking, i.e. they act statically without any rope slip through the brake. Even classical 
braking devices like the Munter hitch (HMS) or tube devices, which are in principle 
dynamic, have a rather high force threshold for a rope slip through the brake. Thus, they 
are considered almost static brakes.  
A body belay with a static brake inevitably pulls up the belayer. The same more exotic 
situation arises in the event of a fall when both the belayer and climber climb 
simultaneously with a more or less taut rope.  
 
In semi-popular publications [5], various suggestions and recommendations about the 
appropriate belay method are circulating without any theoretical background. Detailed 
measurements are still missing. Only Petzl, the manufacturer of the Grigri, published some 
reasonably accurate experiments with the Grigri [6]. 
 
The purpose of this paper is to provide the theoretical background with an exact solution 
of the dynamics of a climbing fall with a movable belayer. For this belay method, an 
impact force formula is derived, replacing the standard fix-point belay impact force and is 
also compared with the mentioned climbing fall experiments. Furthermore, the stopping 
distances of climber and belayer are calculated to determine the allowed fall factors 
without hitting the ground.      
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The climbing fall with a movable belayer without friction 
 
Consider the situation shown in Fig.1. After a free fall of distance h, a climber C of mass 

m1 has the velocity   ghv 201   at P1. He is connected to a rope of length L with a spring 

constant k. The rope, which is deflected by the protection point P2, begins to stretch at P1 
and slides without friction over P2. The climber has the coordinate x1, which cannot exceed 

hL  .  
 

 
Figure1 A belayer B of mass m0 is attached to a climber C of mass m1 who fell a 
distance h and has the velocity v1(0) at P1. The motion of B is described by the 
coordinate x0, C by the coordinate x1. At the protection point P2, there are two 

tensions, PT0 directed towards B and PT1 directed towards C, which differ when 

friction is present. The displacement of the rope at P2 is x2. If B has an angle α to 
the vertical, m0 has to be replaced by the component )cos(0 m in the direction of 

the rope (dotted line).    

 
 

If the belayer B is attached to a fix-point, that is 0)(0 tx fp , the displacement fpx1  of C is 

determined by the oscillator equation gmkxxm fpfp
1111 && . Starting at t=0 with the initial 

velocity )0(1v  from the taut rope position P1 and 0)0(1 fpx , it is given by Eq.(1): 

 

  )cos()0()cos(1)sin(
)0(
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1 txt
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gtx fp 





  ,             (1) 

 

with the frequency of oscillation 1mk . From Eq. (1), the well-known maximum 

impact force    gmkhgmmgxkF fpfp 2)max( 2
1max   can be derived.  

When B is not attached to a fix-point and can freely move vertically without being 
constrained by an impenetrable floor, the equations of motion for B and C are given by 
Eqs. (2a) and (2b): 
 

  gmxxkxm 01000 && ,                        (2a)     

  gmxxkxm 10111 && .                               

(2b) 
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With relative and (shifted) center-of-mass coordinates    
 

01 xxd    and 
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1100

mm

xmxm
s




 , 

 
Eqs. (2a) and (2b) can be transformed into two decoupled equations for d and s 
 

gdd 22  && ,            (3a) 

g
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with the frequency  rmk and the reduced mass 
01

10

mm

mm
mr 

 . mr is half the 

harmonic mean of the masses m1 and m0. The center-of-mass motion s of Eq. (3b) 
represents the motion of the famous Atwood fall machine.  
 

In Eq. (3a), the coordinate d describes the same harmonic motion as the fix-point fpx1  only 

with a different frequency and a different external force. Therefore, the unconstrained 

du(t) can be obtained from ),,(1 gtx fp   of Eq. (1) simply by replacing ω by Ω and g by 2g, 

that is 
 

)2,,()( 1 gtxtd fpu  .           

 

The initial conditions are )0()0( 1
uu xd   and  )0()0( 1vdu &  assuming that x0 starts from a 

rest position )0(1
ux& . The superscript u denotes the unconstrained motion. Together with 

the solution of Eq. (3b), the result is shown in Eq. (4): 
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and Eqs. (2a) and (2b) are solved by  Eqs. (5a) and (5b): 
 

)()()(
01

1
0 td

mm

m
tstx uuu


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)()()(
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mm

m
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
 .                                    

(5b) 
 
The maximum restoring force is shown in Eq. (6a):   
 

    




   )0(22)2,,(max 22

1
2

1maxmax  vggmgtxkkdF r
fpuu .                  (6a) 

 
Written in terms of the fall factor f=h/L, cross section Q of the rope and effective modulus 

of elasticity QkLE  , Eq. (6a) can also be written as shown in Eq. (6b) 

 

  EQfgmgmgmF rrr
u 222 2

max  .                    (6b) 

 
Now the non-holonomic constraint   
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0)(0 tx                                             (7) 

 
is introduced to take into account that B can never be below the ground. 

The expansion of )(0 txu  for short times  )(21)( 32
0 tOgttxu   shows that )(0 txu  always 

starts with a downward motion violating the constraint. Thus, Eqs. (5a) and (5b) are not 
solutions of the constrained problem. 

Based on Eq. (2b), when the restoring force of the rope kx1 becomes larger than 0m g, B 

gets an upward net force and is lifted.  This happens at the take-off time t0 given by Eq. 
(8): 
 

gmtkx fp
001 )(  .              (8)

         

For 0tt  ,  the constrained x0(t) is zero and the fix-point solution is valid. 0t is given by 

Eq. (9): 
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as long as the square root is real, that is  222
1110 )0(1 gvmmm  .  

For a larger m0 there is no take-off at all. The expansion of Eq. (9) for small times gives 

the excellent approximation )0(100 kvgmt  .   

When B takes off at 0t , Inequality (7) is fulfilled and therefore Eqs. (5a) and (5b) are valid 

until B comes back to the ground, assuming that C does not reach the ground first. This 
happens at time  
 

)()(2 100111 mmgtvmt   for m0>m1.   

 
In this paper, t1 is considered as an end point because the further motion of B after 
touching the ground depends on how the collision with the ground is treated, which is not 
of interest here. 
 

With the previous fpx1 and ux 1,0  it is possible to determine the exact piecewise solution with 

the constraint (7) as shown in Eqs. (10a) and (10b): 
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The initial conditions of B are 0)0(0 x  and 0)0(0 v .    )( 0101 txtx fpu  and 

   )( 0101 tvtv fpu  have to be used at time t0. )(1,0 tx&  and )(1,0 tx&&  can be simply obtained by 

differentiating )(1 tx fp  and   01,0 ttxu  in Eqs. (10a) and (10b) once or twice. 
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Figure 2 shows the exact displacements x0(t) and x1(t) of B and C and the forces m0a0(t) 
and m1a1(t) calculated with Eqs. (10a) and (10b). The parameters describe a typical 
climber fall in the initial phase of a climb: h=3 m, L=6 m, and m0=50 kg and m1=70 kg. The 
motion of B starts at the take-off time t0 and is delayed compared to C. At the time where 
F has its maximum, x0(t) is still small, while x1(t) has almost reached a plateau. The forces 
acting on B and C are approximately the same. 
 
 

 
Figure 2 Plot of the displacement x0(t) of the  
belayer B (solid blue) and the force m0a0(t) (dotted blue), 
which acts on him and correspondingly x1(t) (solid red)  
and m1a1(t) (dotted red) for the climber C.  

 
 

The maximum restoring force of the rope  )(max 0max ttdkF u          

can now be calculated with the result shown in Eq. (11): 
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The unconstrained maximum force uFmax  of Eq. (6b) becomes a good approximation for Fmax 

when )0(2 101 vgmm  . 

In Fig. 3, the exact Fmax of Eq. (11) is shown together with its approximation uFmax as a 

function of 01 mm . For )0(2 101 vgmm   uFmax intersects fpFmax . 

 



 

www.SigmaDeWe.com                         © 2021 Ulrich Leuthäusser                                           page 7                          
  

 
 

Figure 3 The exact Fmax (solid blue) from Eq. (11), its approximation  
uFmax

(solid red) from Eq. (6) in kN for v0=7.67m/sec, f=0.5, L=6 m and  

h=3 m. The used spring constant k=3.7 kN/m is typical for a single rope.  

The horizontal dotted line is the fix-point fpFmax
and coincides with Fmax  

in the limit 0m . The maximum relative error uFmax
/Fmax −1 is smaller  

than 2.6% in the range of 0.5<m1/m0<1.5. 

 
 

Comparing Fmax with the fix-point fpFmax , one obtains for larger falls ( gv  )0(1 ) 
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.                                 (12) 

 
Thus, a movable belaying mass with the same mass as the climber typically leads to a 
smaller impact force of approximately 30%. This is a surprisingly large reduction, which 
also exists for the forces on B and C as well as on the force 2Fmax on the protection point 
P2. Remarkably, the force ratio in Eq. (12) is independent of the spring constant k or the 
material constant E. 

The maximum forces on B and C are given by gmFFB 0maxmax   and gmFFC 1maxmax  .  

 

If B jumps off the ground with velocity v0(0), the difference )0()0( 01 vv   enters the 

maximum F of Eq. (6b), which is then changed to Eq. (13): 
  

     )0()0(22 22

01
2

max vvgmgmF rr  .        (13) 

 
Assuming that the movable belayer hits the start time exactly, he can reduce Fmax by an 

additional factor  )0(v)0(v1 10 . Also, the opposite sign of )0(0v  is possible: dangerously  

large forces can appear when the belayer moves quickly backwards during the climber’s 
fall. 
Fmax occurs at time  
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The lengthy exact displacements x0(T) and x1(T) can be replaced by the approximate 

expressions good enough for larger falls ( 1)0(1 vg  ) as shown in Eqs. (14a) and (14b): 
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For values m1/m0, in practice between 0.5 and 1.5, )(1 Tx  is close to the fix-point 

)0()max( 11 vx fp   . 

 
From Eqs. (4) and (5), for m0<m1, the velocity of C always stays positive until C hits the 
ground. When m0>m1, C changes the sign of his initial velocity and s(t) reaches its 
maximum 
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The climbing fall with a movable belayer with friction 
 

Under real conditions, there is no divergence of smax of Eq. (15) for 10 mm  . After a fall, 

B and C of equal weight will stop and C will not hit the ground with half his initial velocity 

2)0(1v . Thus, to get a realistic description, one has to include sliding friction between the 

rope and the top carabiner. 
 
This is done by introducing the auxiliary displacement variable x2 at the deflection point 
P2.  Eqs. (2a) and (2b) take the form:  
 

 211111 xxkgmxm && ,         (16a) 

 020000 xxkgmxm && .         (16b) 

 
The spring constants k0 between x0 and x2 and k1 between x1 and x2 are given by  
 

k
hL

L
k

2/
0 
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h

L
k

2
1  . 

 

The elastic forces in Eqs. (16a) and (16b) act on B and C. The tensions PT 1,0  at the 

deflection point P2 have opposite signs as these forces as shown in Eq. (17) 
 

  02111  xxkT P , 

  00200  xxkT P .          (17) 

 
The Euler-Eytelwein equation relates these two tensions  
 

PP TT 10  ,                     (18) 

 

with   e . μ is the dynamic friction coefficient  and   the angle of contact  between 

the rope and top carabiner. When the belayer is directly below P2 (see Fig.1), one has 
  .  

For several protection points,   is the sum of all turnarounds of the rope. 

While the Euler-Eytelwein relation is usually applied to static friction, it is used here for 
sliding friction. Measured friction coefficients, which strongly depend on the surface 
coating and age of the rope, vary between 0.1 and 0.2. Equation (18) is valid as long as 

0)(2 tx& . In this case, the friction force PP TTR 10   points in the negative x-direction.   

 

Inserting the tensions from Eq. (17) into Eq. (18), one gets    1000112 kkxkxkx    so 

that x2 can be eliminated from Eqs. (16). This leads to the equation of motion for d with 
friction as shown in Eq. (19): 
 

gdd k 22  && ,             (19) 

 
with the changed frequency of oscillation 
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  is an effective spring constant. The presence of friction increases the 

stiffness of the spring.      
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, obtained from Eq. (19), the maximum restoring force 

is given in Eq. (21): 
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In contrast to the case without friction, the maximum forces on B and C are no longer the 

same because friction reduces the tension PT0  (Eq. (18)). These forces are given by Eqs. 

(22a) and (22b):  
 

  gmFxmFB 0max00max max   && ,        (22a) 

  gmFxmFC 1max11max max   && .        (22b) 

 

In the fix-point case, ω is also changed to  1mk  ,  which must be taken into 

account for the comparison of 
maxF with the corresponding maximum fix-point force fpFmax . 

 
For the ratio of the maximum forces for larger falls, one gets Eq. (23): 
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Friction reduces the effect on the moveable belayer and disappears completely in the case 

of large friction 0 . 

 
For the center-of-mass coordinate, one obtains Eq. (24): 
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The second term on the right side of Eq. (19) for t0<t<2T is always less than zero and 

therefore slows down the motion of s. For a static rope with the constraint 0d , this 

term is zero. The travel distance of the center-of-mass coordinate of a static rope always 
exceeds the one of a stretchable rope. 

When equation Eq. (24) is integrated, the integral )0()(

0

dd

t

vtvdt(t)d  &&  appears with an 

unknown )(tvd . The time scale on which )(tvd  goes to zero is of the order 

]m[201.0  [sec] L~Ωπ . It is much shorter than the stopping time of s, which is of the order 

hg . Therefore, d is a fast relaxing variable and vd(t) is already zero at the stopping time 

of s, so one can write  )(v)(vdt(t)d d

t

00 1

0

 && . With this simplification, the integrated 

Eq. (24) becomes  
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The stopping condition is now  
 

10 mm  ,            

 
which is a weaker requirement for m0 than for the case without friction.  
 
The maximum s from Eq. (15) changes to Eq. (26): 
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where gvh 2)0( 2
1  has been inserted.  In contrast to the fix-point maximum elongation, 

which is proportional to f , the relative distance smax/L is directly proportional to f.  

Because of the fast variable d, it contains no rope properties. 
 

To prevent a fall on the ground, the final displacement max1x  of C has to meet the 

condition  
 

hLx max1 ,   

 

which consists of the sum of maxs  and half of the small final static rope stretch d (see Fig. 

1). Without friction, that rope stretch is simply given by   Ld . The static elongation 

 is 6-8% for all climbing ropes for the mass 80 kg. Using d  as an approximation and 

adding 2d  to maxs from Eq. (26), one obtains Eq. (27) in terms of the fall factor f=h/L
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In Fig. 4, the regions of allowed f for κ=0.6 and κ=0.7 are shown as functions of m0/m1. For 
decreasing belayer masses the range of safe fall factors rapidly goes to zero and for  
m0/m1<κ, a fall can no longer be held by B.   
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   Figure 4 Plot of the curves (Eq. 27) which separate the  

safe fall factors f from the prohibited f (with a fall hitting   
the ground) as functions of m0/m1 (κ=0.6 in black and κ=0.7  
in blue). The curves intersect the abscissa at κ. A higher friction  
coefficient increases the region of allowed f. 

 
 
In general, the position of B is not directly below the first protection point. When B has an 
angle  to the vertical (see Fig. 1), only the component of g in the direction of the rope 

acts against the tension PT0 from the rope. Therefore the right hand side of Eq. (3a) has to 

be replaced by  )cos(1 g . 

An additional equation of motion for   describes the swing of B. This oscillatory motion is 

determined by the frequency Lg which is much lower than , describing the 

longitudinal oscillation of the rope. Thus, remains almost unchanged until the force 

maximum. The corresponding formula to Eq. (6b) is  
 

     EQfgmmggmF rrr
u 2)cos(1)cos(1 2

max   . 

 

The expansion 2
maxmax

2

1
)0(  gmFF r

uu   for small   shows that the correction to 

)0(max uF is small.    

 
 



 

www.SigmaDeWe.com                         © 2021 Ulrich Leuthäusser                                           page 13                          
  

Fall experiments and their discussion  
 
The theoretically determined impact forces from the last section are now compared with 
real impact forces [6]. These experiments consist of three series of test falls for three 
different rope lengths and fall heights. The masses of climber C and belayer B are both 80 
kg. The test falls, in particular the first one, are representative of climbing falls with small 
fall factors, which often occur in sport climbing. This is in contrast to the heavy UIAA 
standard fall, which happens very rarely. While in the UIAA setup the main focus lies on 
the properties of the climbing rope, whereas the experiments by Petzl focus on the 
climber and his belayer. 
In these test falls, the force on C differs considerably from the force on B, showing that 
dry friction between the rope and the protection points plays an important role for typical 
climbing falls. For the UIAA standard fall, however, dry friction can be neglected. The 

reason is due to the large fall factor near 2 with a very large 10 kk  , so that kkk  1 . 

The results of the Petzl experiments are listed in Table 1. However, it would be desirable 
to have more detailed and accurate measurements, including stopping distances of B and 
C. 
 

    fall test 1 fall test 2 fall test 3 

1 rope length L  [m] 6.9 3 3.6 

2 fall height h [m] 2 2 3.6 

3 fall factor f=h/L 0.29 0.67 1 

4 m0, m1 [kg] 80, 80 80, 80 80, 80 

5 angle α between B and first protection point ~18° ~27° ~34° 

6 κ 0.7 0.7 0.55 

7 E∙Q [kN] 12.7 12.7 12.7 

8 measured max. force [kN] on climber C  ~2.5 ~3 ~4 

9 measured max. force [kN] on belayer B ~1.5 ~2 ~2 

10 calculated max. force on climber  

maxCF [kN] (Eq. 22b) 2.4 3.19 4.21 

11 calculated max. force on belayer  

maxBF [kN] (Eq. 22a) 1.49 2.13 2.09 

12 calculated max. impact force 

maxF [kN] (max. tension) 3.19 3.97 4.99 

13 calculated max. force on climber fp
CF max

[kN] (fix-point ) 2.88 4.15 5.13 

14 calculated smax [m] 2.39 ground fall ground fall 

15 force reduction 1maxmax fp
CC FF   (line10/line13-1) 16.4% 23.1% 18% 

 
Table 1: Fall tests [6] for different L and h. Measured impact forces on climber and belayer (lines 8 
and 9) in comparison to the theoretically obtained forces (lines 10 and 11). 

 

The measured impact forces of line 8 and 9 of Table 1 have to be compared with 
maxCF and  


maxBF  of line 10 and 11 calculated from Eqs. (22a) and (22b).  

The first fall test has been performed under conditions which are similar to those which 
have been assumed in the presented theory, i.e. only friction on the top carabiner, a small 
angle α between B and C and minimal rope slack. Good agreement between theory and 
experiment is obtained with an error of only a few percent. However, more detailed 
measurements would be desirable.  

The Euler coefficient   e  has the value 0.7 with a chosen .125.0  The modulus of 

elasticity E times the cross section of the rope Q is 12.7 kN for all experiments.  
Due to the small rope elongations for this fall with f=0.29, non-linear elastic behavior [4] 
of the rope can be neglected. Also, its viscoelastic behavior responsible for internal 



 

www.SigmaDeWe.com                         © 2021 Ulrich Leuthäusser                                           page 14                          
  

friction is not very important for the maximum forces, because heavy damping occurs 
mainly in the backward motion of the rope after reaching its maximum elongation [4].  
For the second fall experiment, a lanyard was used. Because the maximum forces occurred 
before the belayer was stopped by the rather long lanyard, a comparison with the theory is 
still possible. Again, good agreement with the measured impacts has been achieved. 
For the third experiment, the assumed friction has to be somewhat higher. This is not 
surprising, because the belayer hits his short lanyard very early with a lot of friction 
involved. 
All test falls with a movable B differ significantly from a fall held by a fix-point belay. In 
Table 1, the force reductions on C with the movable B compared to the fix-point belay are 
approximately 20%.  
How important is energy absorption of the bodies of the belayer and climber in a clean fall 
without hitting the wall? A rough order of magnitude estimation is presented to answer this 

question. Taking into account only soft body tissue, one obtains a modulus of elasticity hE  

of the human body of approximately 27 mN108  [7]. With this value, it is possible to 

estimate a lower bound of the spring constant mN102 6

2


hh

h
h

h

h
hh

L

m
E

L

Q
Ek


, where the 

values   m8.1  and mkg10 ,kg80 33  hhh Lm   of an average person have been used. A 

typical spring constant of a climbing rope ropek (L~3m) is approximately mN104 , which is 

two orders of magnitude softer than kh. 
For impact loading and B, the rope and C in series, it is easy to calculate the ratio of the 

stored elastic energy in the rope ropeU  and the stored elastic energy Uh in the bodies of B 

and C. The result, neglecting friction, is    
 

210~2 
h

rope

rope

h

k

k

U

U
. 

 
Because the human body is much stiffer than the rope, the transmitted energy Uh to B and 
C is much smaller than the energy Urope absorbed by the rope. When small damping of the 
bodies of B and C is included, numerical calculations show no significant change of the 
above estimation.  
 
Regarding the stopping distances, in the first test there is no risk for the climber to hit the 
ground. This agrees with Fig. 4, where the fall factor f=0.29 is inside the region of allowed 

fall factors for 110 mm . In the second test, however, a ground fall would have occurred 

if the experiment had not been carried out in a multi-pitch environment, although f=0.67 
is considerably smaller than one. In Fig. 4, a fall with f=0.67 is outside the region of 
allowed fall factors.  
 
 
Conclusion 
 
In this paper, a climbing fall with a belayer who can be lifted off the ground has been 
investigated. Such a fall differs significantly from a fall held by a fix-point belay. 
For a linear elastic rope, the exact solution has been obtained combining piecewise 
solutions of the unconstrained problem without the ground and the solution for a fixed 
belayer. The solution is characterised by a lift of the belayer at a delayed take-off time. 
The exact solution of that mechanical problem is complicated and lengthy. It was shown 
that for the calculation of the maximum impact force for mass ratios that occur in 
practice, it is sufficient to use the much easier solution Eq. (6) of an unconstrained 
belayer. When friction is included, the form of the force Eq. (6) remains invariant, if the 
angular frequency and the reduced mass are appropriately redefined. The result is Eq. 
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(21). Furthermore, friction leads to a maximum distance which the belayer is pulled up 
(equal to the stopping distance of the climber) given approximately by smax (Eq. (26)) when 
the small static rope elongation is neglected. If the mass m0 of the belayer is smaller than 
the mass m1 of the climber multiplied by the Euler coefficient κ, smax diverges with the 
consequence of hitting the ground.  
As a trade-off to the lifting distance smax, the appearing forces are much smaller due to the 
small reduced mass mr of the belayer and climber which is now responsible for the impact 
force instead of the mass of the climber alone. For equal masses of a belayer and climber, 

the impact force 
maxF  is reduced to the fix-point fpFmax  of approximately %23~11   for 

7.0 .  

Overall, the presented theory of a linear elastic rope with dry friction between rope and 
the protection points is able to explain the forces on the climber and his movable belayer  
in real climbing falls.  
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