Schwierige Schwierigkeiten beim Klettern: objektive, subjektive, maximale, obligate und globale

Ulrich Leuthäusser

(Version 1, 30.03.2011)

In dieser Arbeit wird zuerst versucht, der subjektiven Kletterskala (z.B. der UIAA oder der französischen Skala) eine objektive Schwierigkeit zuzuordnen, die der Leistungsfähigkeit des Kletterers proportional ist. Es werden zwei unterschiedliche Vorgehensweisen beschrieben. Die erste stellt den Zusammenhang durch doppeltes Klettern von Ausdauerrouten her, die zweite Methode fasst Klettern als komplexe Aufgabe auf, die multiplikativ aus mehreren Einzelaufgaben besteht. Beide Zugänge führen zu demselben Ergebnis: die objektive Schwierigkeit wächst etwa mit der 3. Potenz der subjektiven Schwierigkeit.

In einem zweiten Teil wird die globale französische Schwierigkeitsskala analysiert und gezeigt, dass sie nahezu vollständig durch eine Beziehung aus maximaler und obligatorischer Schwierigkeit erklärt werden kann.

1. Objektive und subjektive Schwierigkeit

Welche Beziehung besteht zwischen der Kletterskala, die eine subjektive Wahrnehmung darstellt, und der dahinter stehenden, nicht direkt beobachtbaren, objektiven Schwierigkeit?

Für jeden Kletterer ist es klar, dass bei Verdopplung der Kletterskala, sagen wir bei der UIAA Skala von 5 auf 10, sich die objektive Schwierigkeit weit mehr als verdoppelt. Aber um wie viel? Diese Frage wird wichtig, wenn man seine Kletterleistung objektiv bewerten will oder wissen möchte, welche Leistungssteigerung nötig ist, um ein bestimmtes Kletterniveau zu erreichen.

Beim berühmten Weber-Fechner Gesetz gibt es eine solche Beziehung: da wird der (objektive) physikalische Reiz von dem "Sensor" logarithmiert, so dass es ihm möglich ist, Unterschiede von einigen Zehnerpotenzen des physikalischen Reizes als Sinneseindruck wahrzunehmen. In der Akustik ist bei Verdopplung des Schalldrucks der gehörte Ton nicht doppelt so stark, erst beim zehnfachen physikalischen Reiz wird die empfundene Lautstärke verdoppelt. Genauere Untersuchungen von Stevens¹ haben dann ergeben, dass eher ein Potenzgesetz gilt, wobei Stevens auch komplexere Reiz-Reaktionsmuster bei seinen Untersuchungen miteinbezogen hat.

Aufs Klettern angewandt, hat das Stevens'sche Gesetz die Form

$$D_{s} = a \cdot D_{o}^{b} \tag{1}$$

- Do ist die objektive, physikalische Schwierigkeit. Diese allgemein zu definieren ist schwierig. Im Folgenden werden zu ihrer Festlegung zwei unterschiedliche Methoden verwendet.
- D_s ist die subjektive, gefühlte Schwierigkeitsskala, z.B. die französische oder die der UIAA.
- b ist der Exponent, der entscheidet ob die Beziehung konkav, konvex oder linear ist.
- a ist ein eher unwichtiger Proportionalitätsfaktor, der von der benutzten Kletterskala abhängt, denn das Umskalen der Kletterskala $D_s \to \alpha D_s$, das D_o unverändert lässt, ergibt $a \to \alpha a$.

Für zwei Werte D_0 und D_0' und den Veränderungen

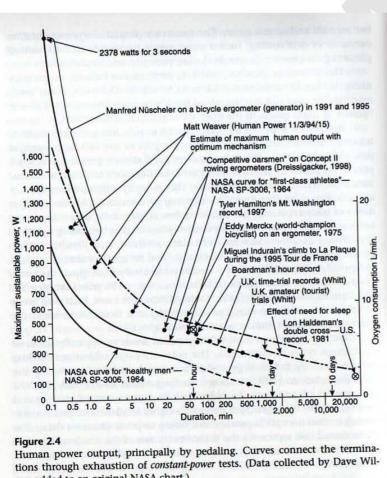
$$\Delta D_o = \frac{D_o'}{D_o} - 1 \quad \text{und} \quad \Delta D_s = \frac{D_s(D_o')}{D_s(D_o)} - 1$$

erhält man aus Gleichung (1)

$$\frac{\Delta D_s}{D_s} = \left(1 + \frac{\Delta D_o}{D_o}\right)^b - 1 \tag{2a}$$

und differentiell

 $\frac{dD_s}{D_c} = b \frac{dD_o}{D_o}$ (2b)


¹ http://en.wikipedia.org/wiki/Stevens%27_power_law

Es ist anzunehmen, dass für Routen ab einem bestimmten Schwierigkeitsgrad eine konkave Beziehung b<1 existiert wie beim Weber-Fechner Gesetz, denn dann wird bei einer Veränderung der Bewertung D_s um ΔD_s ein um 1/b verstärkter physikalischer Reizunterschied benötigt. Wäre dieser zu klein, dann würden die Bewertungen einer vorgegebenen Route durch unterschiedliche Kletterer stark schwanken.

Zur Bestimmung von b werden zwei ganz unterschiedliche Vorgehensweisen gewählt. Die eine versucht, die gewünschte Relation durch Verdoppeln der Zeit beim Ausdauerklettern zu finden.

Die andere fasst Klettern als eine komplexe Tätigkeit auf, die aus mehreren Einzelfertigkeiten besteht. Deren Produkt ist der objektiven Schwierigkeit proportional. Da man ungefähr die Verteilung der Kletterer, die bis zu einem bestimmten Grad klettern können, abschätzen kann, erhält man so eine Beziehung zwischen Ds und Do.

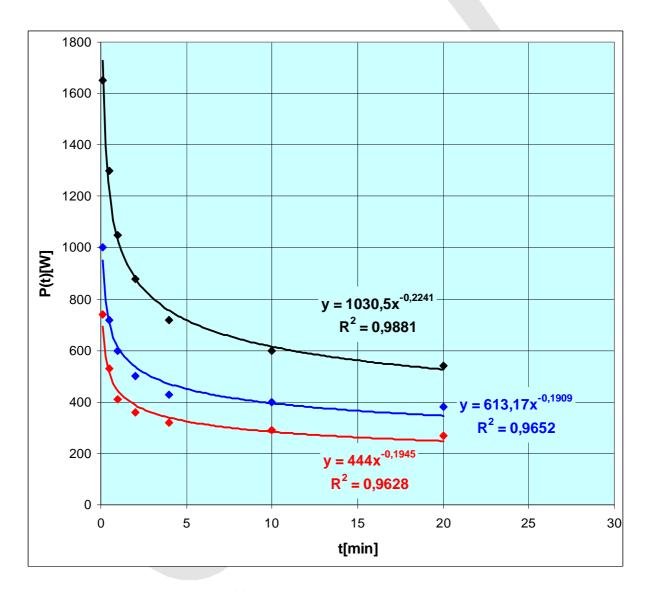
1.1. Verdopplung der Kletterzeit zur Bestimmung von b

son added to an original NASA chart.)

Die obige Abbildung² zeigt die maximale Leistung P(t), die ein Mensch innerhalb eines Zeitraums t erbringen kann.

Obwohl die Leistungsbestimmung durch Arbeit (hauptsächlich) auf dem Ergometer bestimmt wurde, ist die Übertragbarkeit der Ergebnisse auf triviales, steiles Ausdauerklettern wegen der großen Ähnlichkeit der beteiligten Energiesysteme mit demselben anaeroben Schwellenmechanismus nicht zu weit hergeholt.

² Abbott, Allan and David Wilson, Human-Powered Vehicles. Champaign, IL: Human Kinetics Publishers, 1995


Ein Fit liefert in guter Näherung ein Potenzgesetz der Form

$$P(t) = A \cdot t^{-c} \tag{3}$$

mit c \approx 0.2 (siehe folgende Abbildung). Verdoppelt man die Zeit, in der die maximale Leistung erbracht werden soll, dann reduziert sie sich um

$$\frac{P(2t) - P(t)}{P(t)} = 2^{-c} - 1 \approx -13\%.$$

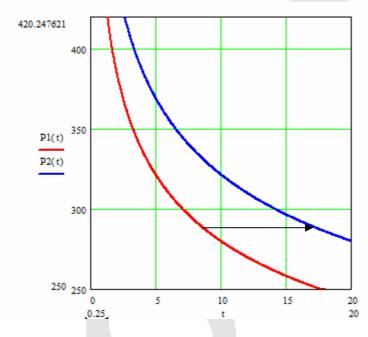
Dieser Leistungsabfall ist unabhängig vom Zeitraum t.

Erhöht man die Leistung um $\frac{\Delta P}{P} = 10\%$, indem man z.B. mit einer Gewichtsweste eine steile Route klettert, dann reduziert sich die Durchführungszeit

$$\frac{\Delta t}{t} = \left(1 + \frac{\Delta P}{P}\right)^{-\frac{1}{c}} - 1 \approx -\frac{1}{c} \frac{\Delta P}{P}$$

und damit auch die Zahl der Züge oder die Kletterstrecke um ca. -38%. Die Schlussfolgerungen bez. Gewichtsreduktion sind offensichtlich (siehe Anhang 1).

A aus Gl.3 verschiebt P(t) vertikal und teilt Athleten in verschiedene Klassen ein, wie z.B. hobbymäßige, ambitionierte oder professionelle Kletterer. Der Exponent c ist, wie man sieht, für alle Klassen etwa gleich.


Ein Athlet mit einem $A_2 = 2^c \cdot A_1 \cong 1.149 \cdot A_1$ kann doppelt solange die gleiche Leistung erbringen wie der Athlet mit A_1 , da

$$t_2 = \left(\frac{A_2}{P}\right)^{\frac{1}{c}} = \left(\frac{2^c A_1}{P}\right)^{\frac{1}{c}} = 2t_1$$

Der relative Leistungsunterschied beträgt:

$$\frac{P_2(t)}{P_1(t)} - 1 = \frac{A_2}{A_1} - 1 = \frac{\Delta D_o}{D_o} = 2^c - 1 = 0.149.$$

Er ist für alle Zeiten gleich und rechtfertigt daher die Gleichsetzung mit der relativen objektiven Schwierigkeit.

Abb.: Eine 8ter - Route sei von dem "roten" Kletterer mit der roten Leistungskurve gerade mit einer Leistung von ca. 290W kletterbar. Da die Route ca. 8 min dauert, müsste er um denselben 8-ter sofort nochmals zu klettern die "blaue" Leistung erbringen.

Ziel ist es nun, mit Hilfe von den Gleichungen (2) den Exponenten b zu bestimmen.

Das nochmalige Klettern einer Ausdauerroute mit homogenen Schwierigkeiten ohne auszuruhen führt zur Erhöhung der subjektiven Schwierigkeit um etwa einen Plusgrad bei einer Ausgangsschwierigkeit von 8(UIAA). Dies ist der eigene Eindruck und wird bestätigt durch viele befragte Kletterer. Die Kletteralgebra ist also

$$D_{s}(2t) = D_{s}(t) + 1/3 \tag{4}$$

was aber nur lokal für etwa $D_s=8$ gilt. Würde diese Beziehung global gelten, dann wäre die Lösung dieser funktionalen Beziehung $D_s \propto ln(t) \propto ln(A)$, was das Weber-Fechnersche Gesetz darstellt.

Man kann mit Gleichung (4) auch abschätzen, wie eine Ausdauerroute, die rotpunkt geklettert beispielsweise 9 ist, durch Rasten leichter wird: 1 Rastpunkt ergibt 8.67 = 9-, 2 Rastpunkte ergeben $8.47 \approx 8$ +.

Mit $\Delta D_s = 1/3$ ist

$$b = \frac{ln\left(1 + \frac{1}{3} \cdot \frac{1}{8}\right)}{ln\left(1 + \frac{\Delta D_o}{D_o}\right)} \cong 0.29.$$

Auf der franz. Skala (siehe Anhang 3) ergeben 2 Schritte 7a \rightarrow 7a+ \rightarrow 7b dasselbe $\Delta D_s = 7b - 7a = 1/3$, so dass

$$b = \frac{ln\left(1 + \frac{1}{3} \cdot \frac{1}{7}\right)}{ln\left(1 + \frac{\Delta D_o}{D_o}\right)} \cong 0.33$$

Das Ergebnis für b mit Hilfe des Ausdauerkletterns ist also etwa 0.3.

1.2. Klettern als komplexe Aufgabe bestehend aus mehreren Einzelfertigkeiten³

Wir betrachten Einzelfertigkeiten f_i, wie

- körperliche Voraussetzungen: Körpergewicht, rel. Kraft, Handkraft/Masse Verhältnis, Beweglichkeit,
- Klettertechnik mit der Beherrschung vieler Bewegungsmuster, Präzision und Koordination
- mentale Fähigkeiten: Motivation, Selbstkontrolle
- strategische Fertigkeiten und
- Auffassungsgabe, Situationserfassung, Reaktionsfähigkeit

die zum erfolgreichen Bewältigen einer Kletterroute eines bestimmten Schwierigkeitsgrads im on sight Stil nötig sind. Äußere Einflüsse ändern den Schwierigkeitsgrad zusätzlich. Die Anzahl dieser Einzelkomponenten ist sicher von der speziellen Kletterroute abhängig, aber wie sich zeigen wird, im Mittel 4 oder 5.

Die Gesamtfähigkeit S entspricht dem Klettern einer bestimmten objektiven Schwierigkeit S und ist das Produkt aus den Einzelfertigkeiten f_i . Führt man eine minimale Gesamtfähigkeit S_{min} ein, erhält man

$$S = S_{\min} + f_1 \cdot f_2 \cdot ... f_n$$
.

³ Es wird ein Modell angewendet, dass auf Shockley [Shockley, W. (1957) Proc. IRE 45, 279-290] zurückgeht.

Mit dieser multiplikativen Form beschreibt man n Komponenten "in Serie", die alle möglichst hoch sein müssen, um eine hohe Gesamtfertigkeit zu erreichen. Schon der Ausfall einer Einzelfertigkeit führt zum Scheitern an der Gesamtaufgabe S. Im Modell ist auch die Möglichkeit enthalten, eine schwächere Fertigkeit durch eine stärker ausgeprägte zu kompensieren.

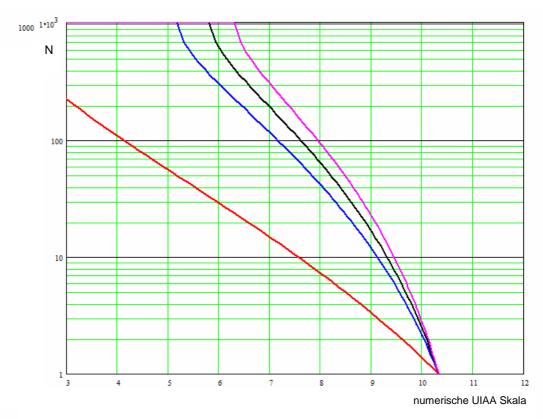
Die f_i werden als unabhängige und gleich verteilte Zufallsvariable angenommen. Sie können nicht beliebig groß werden, und bezieht man sie auf ihren Maximalwert, dann erhält man den Wertebereich [0,1].

Man benötigt nun die Häufigkeitsverteilung p(S), die ausdrückt, welcher Anteil Kletterer in der Lage ist, eine Schwierigkeit zwischen S und S + ΔS zu klettern. p(S) ist im Anhang 2 zu finden. Mit p(S) kann man berechnen, welcher Anteil N von z.B. 1000 Kletterern in der Lage ist, mehr als eine bestimmte Schwierigkeit S zu klettern:

$$N(S) = 1000 \cdot (1 - F(S)) = 1000 \left(1 - \int_{S_0}^{S} p(S') dS' \right)$$
 (5)

Nehmen wir an, dass es ein S_{max} gibt, das nur von einer Handvoll der besten Kletterer im on sight Modus erreicht wird. S_{max} erfüllt

$$N(S_{max}) = O(1) \approx 1 = 1000 \cdot (1 - F(S_{max}))$$


als Bestimmungsgleichung für S_{max} . Die momentane maximale on sight Schwierigkeit der besten Kletterer beträgt etwa $D_s(S_{max}) = 10 + = 10\frac{1}{3}$ auf der UIAA Skala. Damit lässt sich a aus $D_s(S) = aS^b$ eliminieren und es gilt

$$\frac{D_s(S)}{D_s(S_{max})} = \left(\frac{S}{S_{max}}\right)^b \tag{6}$$

Für $S = S_{min}$ ist $F(S_{min}) = 0$ und daher $N(S_{min}) = 1000$. Dies entspricht dem minimalen on sight Niveau von

$$D_s(S_{min}) = D_s(S_{max}) \left(\frac{S_{min}}{S_{max}} \right)^b.$$

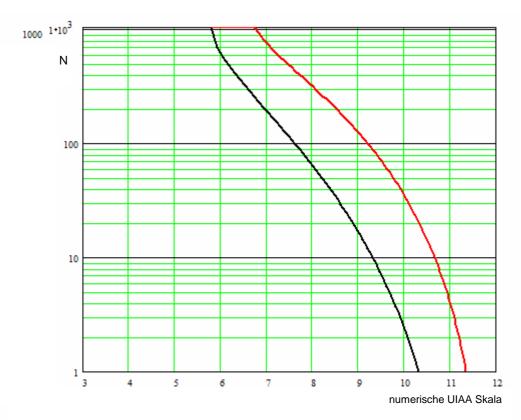

Die Gleichungen (5) und (6) ergeben eine Beziehung zwischen N(S) und $D_s(S)$ in Parameterdarstellung. Diese ist im Prinzip messbar und bietet daher eine Möglichkeit zur Bestimmung von b.

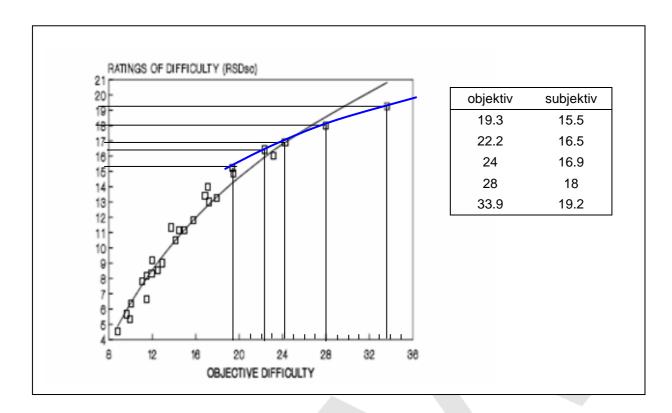
Abb.: Zahl der Kletterer N, die mehr als eine bestimmte Schwierigkeit S klettern können. Parameterdarstellung von log(N(S)) und $D_s(S)$ mit S_{min} =0.14, n = 4

Die rote Kurve N(S) als Funktion von $D_s(S)$ ~ S ist nicht in der Lage, realistische N(S) zu erzeugen, da sie viel zu flach verläuft.

Die blaue Kurve N(S) als Funktion von $D_s(S) \sim S^{0.4}$, die schwarze Kurve N(S) vs. $D_s(S) \sim S^{0.33}$ und die magentafarbene Kurve N(S) vs. $D_s(S) \sim D^{2/7}$ hingegen liegen viel näher an realistischen Häufigkeitsverteilungen. So besagt z.B. die schwarze Kurve, dass im on sight Modus etwa 600 Kletterer von 1000 regelmäßig mehr als den 6ten Grad, etwa 70 Kletterer von 1000 mehr als den 8ten Grad und etwa 20 mehr als den 9ten Grad klettern können.

Abb.: Zahl der Kletterer N, die mehr als eine bestimmte Schwierigkeit S on sight (schwarze Kurve) und rotpunkt (rote Kurve) klettern können

In der obigen Abbildung ist nochmals das on sight Kletterniveau (schwarz) im Vergleich zum Rotpunktkletterniveau (rot) dargestellt. Dabei ist angenommen, dass die Anzahl der f_i von 4 auf 3 sinkt, weil die Fähigkeit der schnellen Auffassungsgabe und die Fähigkeit, Fehler zu korrigieren, beim Klettern von gelernten Routen wegfällt. Gleichzeitig wird S_{min} sich etwas erhöhen, weil Lerneffekte die Fähigkeit, eine spezielle Route zu klettern, erhöhen, so dass sich eine Parallelverschiebung der Verteilung nach rechts ergibt.


Die Ergebnisse sind robust gegenüber kleinen Änderungen von S_{min} oder n.

Das Ergebnis für b mit Hilfe der Kombination komplexer Einzelfertigkeiten ist also etwa 0.33.

1.3. Vergleich mit Delignieres⁴

Ein weiterer Hinweis auf den Exponenten b stammt aus einer Arbeit von Delignieres. Die von dort entnommene folgende Abbildung zeigt Messungen der subjektiven Einstufung als Funktion der objektiven Schwierigkeit. Leider gibt es nur wenige Messpunkte im Schwierigkeitsbereich größer als 6a.

⁴ Delignières, D. et al. (1993). International Journal of Sport Psychology, 24, 404-416.

Für die gekennzeichneten Messwerte, die Schwierigkeiten >6a entsprechen, sind die jeweiligen x und y-Werte entnommen und in die nebenstehende Tabelle eingetragen worden.

Mit $D_s = aD_o^b$ als Regressionsgleichung wurde b = 0.376 ermittelt.

1.4. Schlussfolgerungen

In dem ersten Teil dieser Arbeit ist ein Zusammenhang zwischen der objektiven Schwierigkeit D_{\circ} und der damit verbundenen erforderlichen Kletterleistung und der subjektiven Wahrnehmung D_{\circ} dieser Schwierigkeit hergestellt worden.

Zwei unabhängige Modelle einerseits und ein Experiment anderseits, die alle ein Potenzgesetz $D_s = aD_o^b$ (Gl. 1) unterstellen, ergeben immer einen Exponenten b zwischen 0.3 und 0.4. Nach D_o aufgelöst hat man daher

$$D_o(D_s) \propto D_s^{\frac{1}{b}}$$
 mit $2.5 < \frac{1}{b} < 3.33$ (7)

Die objektive Schwierigkeit steigt also mit etwa der dritten Potenz der subjektiven Schwierigkeit an. Diese Beziehung gilt ungefähr ab dem Schwierigkeitsgrad 6. Beim leichten Klettern kleiner 6 hat man es weder mit einer komplexen Aufgabe zu tun, noch kann durch Verdoppeln der Kletterstrecke ein wesentlicher Schwierigkeitszuwachs erzielt werden. Auch in der obigen Abbildung auf dieser Seite ist die Beziehung zwischen D_{o} und D_{s} für kleinere Werte nahezu linear.

Mit b = 0.33 erhöht sich die relative objektive Schwierigkeit $\Delta D_o/D_o$ um fast den Faktor 2, wenn die Schwierigkeit von 7 auf 10 steigt, denn

$$\frac{\Delta D_o}{D_o} = \left(\frac{\Delta D_s}{D_s} + 1\right)^{\frac{1}{b}} - 1 = \left(\frac{10}{7}\right)^3 - 1 = 1.91.$$

Dieser Wert ist durchaus plausibel, wenn man ihn mit anderen Sportarten vergleicht. So ist beim Bergzeitfahren mit dem Rad das objektive Maß für die Leistungsfähigkeit die relative physikalische Leistung, gemessen in Watt/Körpergewicht. Der Radprofi, der dem Zehnerkletterer entspricht, besitzt eine Dauerleistung pro Körpergewicht von 5-6 [W/kg]. Der Tourenfahrer⁵ mit 2-3 [W/kg] entspricht dem ambitionierten Hobbykletterer.

Eine Erhöhung der Schwierigkeit von 7 auf 8 lässt die objektive Schwierigkeit um etwa 50% ansteigen und eine Erhöhung von 8 auf 9 ergibt einen Anstieg von 42%. Auch diese Werte scheinen realistisch, wenn man bedenkt, wie schwierig es ist, vom Siebenerkletterer zum Achterkletterer oder vom Achterkletterer zum Neunerkletterer zu werden. Die Beziehung (7) bestätigt auch die zu beobachtende relative Konstanz des Kletterniveaus einzelner Kletterer. Durch Tagesformschwankungen ist es in der Regel nicht möglich, 50%, was ungefähr einem ganzen Grad entspricht, stärker zu klettern. Es erklärt auch, warum die "Fluktuationskletterer", die durch langes Wiederholen schließlich eine Route über ihrem Niveau klettern, so lange dafür brauchen.

www.SigmaDeWe.com

⁵ M. Nüscheler, Leistungsfähigkeit auf dem Rad am Berg. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie, 49 (2), 79-81, 2001

2. Rückführung der globalen Schwierigkeit auf andere Schwierigkeiten

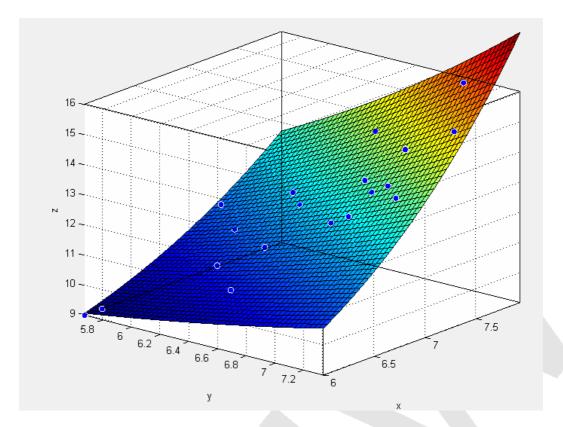
In diesem Abschnitt wird die französische globale Schwierigkeitsskala (D, TD, ED, etc.) mit Hilfe einer Regressionsanalyse auf andere Variable zurückgeführt.

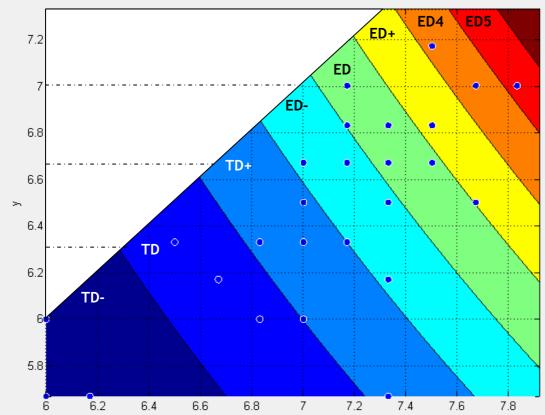
In der unteren Tabelle 1 sind 33 z.T. berühmte, hauptsächlich französische Kletterrouten mit ihrer globalen Schwierigkeit D_{glob} , ihrer maximalen Schwierigkeit D_{max} und ihrer obligatorischen D_{obl} aufgelistet. Alle Werte wurden der französischen Webseite camptocamp⁶ entnommen.

 D_{glob} wurde in eine numerische Skala transformiert mit der Zuordnung F = 1, PD = 2, AD- = 3, ..., D- = 6, ..., TD- = 9,

Der beste Fit der globalen Schwierigkeit aus einer Reihe von allgemeinen Funktionen wird mit Hilfe der folgenden Funktion erreicht

$$D_{glob} = D(0) + \left(\frac{D_{max}}{s}\right)^{x} \left(\frac{D_{obl}}{s}\right)^{y}$$
 (8)


Um von der speziellen numerischen Skala der globalen Bewertung unabhängig zu sein, müssen die Parameter D(0) und s, die eine Skalentransformation beschreiben, eingeführt werden. Die Produktform aus D_{max} und D_{obl} hat einen plausiblen Verstärkungseffekt zur Folge, derart dass eine Vergrößerung von D_{obl} bei großem D_{max} einen stärkeren Einfluss auf D_{glob} hat als bei kleinem D_{max} .


Die Regressionsanalyse liefert folgende Koeffizienten

$$D(0) = 7.648$$
, $s = 5.6$, $x = 4.57$, $y = 2.78$

In der folgenden Abbildung (z-Achse: globale Schwierigkeit, x-Achse: max. Schwierigkeit, y-Achse: obl. Schwierigkeit) ist die "Fläche" D_{glob} (8) dargestellt.

⁶ http://www.camptocamp.org/

In dem obigen Contourplot sind die Bereiche der globalen Schwierigkeitsgrade von TD-, TD, etc. in Abhängigkeit der maximalen (x-Achse) und obligatorischen (y-Achse) Schwierigkeit dargestellt. Geht man beispielsweise bei einem konstanten D_{max} = 7.4 (ca. 7b) senkrecht nach oben, dann überquert man 5 globale Schwierigkeitsgrade angefangen von TD+ bis hin zu ED4. Der weiße Bereich ist wegen $D_{max} \ge D_{obl}$ nicht relevant.

Die Kennzahlen der Anpassungsgüte sind R^2 = 0.9573 und die Standardabweichung der Residuen = 0.40. R^2 ist ein sehr guter Wert und besagt, dass der Fit mit Hilfe der 2 Variablen D_{max} und D_{obl} über 95% der Variation von D_{glob} erklärt. Andere Größen wie die Länge der Route, psychische Belastung, etc. spielen daher nur eine geringe Rolle, obwohl die Korrelation zwischen der Routenlänge und D_{glob} immerhin 40% beträgt (siehe Tabelle 1, Spalte 5 und 10). Vermutlich wird die Länge indirekt und unbewusst in den Schwierigkeitsgraden mitberücksichtigt: eine 7a Seillänge am Ende einer 500m Route hätte eine andere Bewertung, wenn sie eine einzelne Route im Klettergarten wäre. Die obligatorische Bewertung enthält indirekt auch einen Teil der psychischen Bewertung. Sie kann aber keine vollständige Auskunft darüber geben, ob sich die Schwierigkeit direkt über dem letzten Haken oder zwischen den Haken befindet.

7 von 33 Routen (letzte Spalte der Tabelle 1) werden nicht von der Formel (8) reproduziert. Abgesehen von der Rundung, die Abweichungen verstärkt, scheinen manche Fitwerte plausibler als die reale globale Bewertung: so ist z.B. "Surveiller et punir" und "Gwendal" eher zu leicht bewertet.

Die französische globale Bewertung hat folgende Regel: aus einer bestimmten obligatorischen Bewertung folgt eine minimale globale Bewertung, z.B. führt 6a obl. zu minimalen D_{glob} von TD-, oder aus 7a obl. folgt ein minimales D_{glob} von ED- 7 . Obwohl die Datenpunkte per Konstruktion diese Regel erfüllen, erfüllt die Regressionsgleichung (8) diese Randbedingung nicht zwangsläufig. Eigentlich liegt eine kompliziertere Aufgabe vor, nämlich Regression mit einer Zwangsbedingung. Wie aber aus der Tabelle 1 ersichtlich, wird diese Minimumsregel

$$D_{glob} > D_{min} = D(0) + \left(\frac{D_{obl}}{s}\right)^{x+y}$$
 (9)

immer erfüllt.

Aus Gleichung (8) erhält man die Veränderung von Dglob

$$\frac{dD_{glob}}{D_{glob} - D(0)} = x \frac{dD_{max}}{D_{max}} + y \frac{dD_{obl}}{D_{obl}}$$

d.h. da x>y ist, hat eine Veränderung von D_{max} auf die globale Bewertung einen etwas stärkeren Einfluss als D_{obl} . Der Einfluss auf D_{obl} ist trotzdem beachtlich: wie aus dem Contourplot ersichtlich, hat die rechte untere Ecke des Bereichs TD+ die Koordinaten (7.67, 5.7) was $7c_{max}$ und $5c_{obl}$ entspricht (eine eher seltene und ungewöhnliche Kombination); die linke obere Ecke hat die Koordinaten (6.6, 6.6), was etwa $6c_{max}$ und $6c_{obl}$ entspricht.

Aus der Tatsache, dass man D_{glob} fast vollständig durch andere Variable erklären kann, folgt eigentlich, dass man D_{glob} nicht braucht, da keine neue Information in D_{glob} enthalten ist. Dies ist wohl auch der Grund, warum manche französischen Autoren auf die globale Schwierigkeit mittlerweile ganz verzichten.

Anderseits ist die Bewertung einer Route durch nur eine Zahl verlockend, deshalb probieren wir die gefundene Formel an Routen aus anderen Regionen aus. Die Ergebnisse sind in der Tabelle 2 zu finden.

⁷ http://www.camptocamp.org/articles/188413/fr/aide-topoguide-cotation-alpine-globale.

Routenname	Gebiet	glob. Schwierigk.	Minmums regel	num. glob. Schwierigk.	max. Schwierigk.	num. max. Schwierigk.	obligat. Schwierigk.	num. obl. Schwierigk.	Routen länge	Dglob= F(D _{max} , D _{obl})	num.Mini mumsregel	Dglob > F(D _{obl} , D _{obl})	Minmums regel erüllt	Fit Dglob gerundet	Kommentar
Eperon de 4 vents	Aiglun	TD-	>D+	9	6a+	6,17	5c	5,67	220	9,25	8	8,74	ja	9	
Nid d'Aigle	Presles	TD-	>D+	9	6a+	6,17	5c	5,67	250	9,25	8	8,74	ja	9	
L'offre	Verdon	TD-	>D+	9	6a	6,00	5c	5,67	200	9,07	8	8,74	ja	9	
La Demande	Verdon	TD	>TD-	10	6a	6,00	6a	6,00	320	9,31	9	9,31	ja	9	Dglob>Fit
Topomaniak	Presles	TD	>TD-	10	6c+	6,83	6a	6,00	250	10,66	9	9,31	ja	11	Dglob <fit< td=""></fit<>
Serieux s'abtenir	Verdon	TD	>TD-	10	6b+	6,50	6b	6,33	130	10,43	9	10,11	ja	10	
Feu Sacre	Tour Termier	TD+	>TD-	11	7a	7,00	6a	6,00	280	11,01	9	9,31	ja	11	
La cerise sur le gateau	Aiglun	TD+	>TD	11	6c+	6,83	6b	6,33	210	11,14	10	10,12	ja	11	
Eperon sublime	Verdon	TD+	>TD-	11	7a	7,00	6a	6,00	150	11,01	9	9,31	ja	11	
Roumagaou	Verdon	TD+	>TD-	11	6c	6,67	6a+	6,17	180	10,55	9	9,68	ja	11	
Debut de millenaire	Presles	TD+	>D+	11	7b	7,33	5c	5,67	200	11,19	8	8,74	ja	11	
L'echarpe	Aiglun	ED-	>TD-	12	7b	7,33	6a+	6,17	250	12,13	9	9,68	ja	12	
Serie limitee	Verdon	ED-	>TD	12	7a	7,00	6b	6,33	320	11,55	10	10,12	ja	12	
L'ange	Verdon	ED-	>TD+	12	7a	7,00	6c	6,67	100	12,15	11	11,25	ja	12	
Singes en hiver	Presles	ED-	>TD	12	7a	7,00	6b+	6,50	250	11,84	10	10,64	ja	12	
Le droit chemin	Presles	ED-	>TD	12	7a+	7,17	6b	6,33	230	11,99	10	10,12	ja	12	
Saga	Aiglun	ED-	>TD	12	6c+	6,83	6b	6,33	250	11,14	10	10,12	ja	11	Dglob>Fit
Vue de l'exterieur	Presles	ED-	>TD	12	7a	7,00	6b+	6,50	200	11,84	10	10,64	ja	12	
Surveiller et punir	Verdon	ED-	>TD+	12	7a+	7,17	6c	6,67	120	12,66	11	11,25	ja	13	Dglob <fit< td=""></fit<>
Alix	Verdon	ED	>TD+	13	7b	7,33	6c	6,67	300	13,22	11	11,25	ja	13	
Gwendal	Verdon	ED	>TD+	13	7b	7,33	6c+	6,83	250	13,61	11	11,97	ja	14	Dglob <fit< td=""></fit<>
La fete des nerfs	Verdon	ED	>TD+	13	7a+	7,17	6c+	6,83	280	13,02	11	11,97	ja	13	
Caminando	Wenden	ED	>TD+	13	7a+	7,17	6c	6,67	500	12,66	11	11,25	ja	13	
Millenium	Wenden	ED	>TD	13	7b	7,33	6b+	6,50	500	12,84	10	10,64	ja	13	
Demon	Verdon	ED	>ED-	13	7a+	7,17	7a	7,00	150	13,39	12	12,80	ja	13	
Daisy chienne	Tour Termier	ED+	>TD+	14	7b+	7,50	6c+	6,83	260	14,26	11	11,97	ja	14	
Ici mieux qu'en face	Tour Termier	ED+	>TD+	14	7b	7,33	6c+	6,83	250	13,61	11	11,97	ja	14	
L'artisan du huitième jour	Aiglun	ED+	>TD+	14	7b+	7,50	6c	6,67	230	13,83	11	11,26	ja	14	
Croquignol	Aiglun	ED+	>TD	14	7c	7,67	6b+	6,50	300	14,01	10	10,64	ja	14	
Aguirre	Tours d'Areu	ED4	>TD+	15	7b+	7,50	6c+	6,83	200	14,26	11	11,97	ja	14	Dglob>Fit
Peter Punk	Presles	ED4	>ED-	15	7b+	7,50	7a+	7,17	400	15,19	12	13,78	ja	15	
Troutherapie	Aiglun	ED5	>ED-	16	7c+	7,83	7a	7,00	270	16,25	12	12,80	ja	16	
Happy birthday	Croix de tetes	ED5	>ED-	16	7c	7,67	7a	7,00	600	15,46	12	12,80	ja	15	Dglob>Fit

Tabelle1

Routenname	Gebiet	max. Schwierigk	num. max. Schwierigk.	obligat.	num. obl. Schwierigk.	Dglob = F(D _{max} , D _{obl})	Fit Dglob	glob. Schwierigk
Wassersymphonie	Berchtesgadener Alpen, Alpawand	7+	6,56	7-	6,11	10,27	10	TD
Südostverschneidung	Wilder Kaiser, Fleischbank	8-	6,78	7-	6,11	10,70	11	TD+
Ottovolante	Dolomiten, Brunecker Turm	<u>7a</u>	7	<u>6a+</u>	6,17	11,28	11	TD+
Soleado	Sarcatal, Mandrea	<u>7a+</u>	7,17	<u>6a</u>	6	11,40	11	TD+
Chef	Chiemgauer Alpen, Loferer Alm	8	7	7	6,33	11,55	12	ED-
Wolfgang Güllich	Sardinien, Punta Giradili	<u>7a</u>	7	<u>6b</u>	6,33	11,55	12	ED-
Schneidige Indianer	Chiemgauer Alpen, Loferer Alm	8+	7,22	7	6,33	12,14	12	ED-
Schöne Tage	Chiemgauer Alpen, Loferer Alm	8	7	8-	6,78	12,37	12	ED-
Zanzara	Sarcatal, Monte Colodri	<u>7a+</u>	7,17	<u>6c</u>	6,67	12,68	13	ED
Giovanni Segantini	Sarcatal, Monte Colodri	<u>7a</u>	7	<u>7a</u>	7	12,80	13	ED
Unendliche Geschichte	Berchtesgadener Alpen, Untersberg	8+	7,22	8-	6,78	13,08	13	ED
Rabl Foidl Ged Weg	Chiemgauer Alpen, Steinplatte	8+	7,22	8-	6,78	13,08	13	ED
Hitzeschild	Chiemgauer Alpen, Steinplatte	9-	7,44	7+	6,56	13,34	13	ED
Sonnenkönig	Hochkönig, Flachfeld	8+	7,33	8-	6,78	13,47	13	ED
sDunnaweda	Chiemgauer Alpen, Steinplatte	8+	7,33	8-	6,78	13,47	13	ED
Opera Vertical	Hochkönig, Torsäule	8+	7,22	8	7	13,59	14	ED+
Spätlese	Chiemgauer Alpen, Steinplatte	8+	7,22	8	7	13,59	14	ED+
Pfeilermix	Berchtesgadener Alpen, Untersberg	9-	7,44	8-	6,78	13,88	14	ED+
Groove	Chiemgauer Alpen, Steinplatte	9-	7,33	8	7	14,01	14	ED+
Anton aus Tirol	Dolomiten, Brunecker Turm	<u>7b</u>	7,33	<u>7a</u>	7	14,01	14	ED+
Die Nase	Chiemgauer Alpen, Loferer Alm	9+	7,89	7	6,33	14,38	14	ED+
Dudaev	Sarcatal, Piccolo Dain	<u>7c</u>	7,67	6c+	6,83	14,96	15	ED4
Neufundland	Chiemgauer Alpen, Loferer Alm	9	7,67	8	7	15,48	15	ED4

Tabelle2. Die Bewertungen der UIAA und der französischen Skala (unterstrichen) sind auf eine gemeinsame, die numerische franz. Skala, transformiert worden. Es ist interessant, Routen mit der exakt gleichen Bewertung miteinander zu vergleichen. Tatsächlich ist gefühlsmäßig kaum ein Unterschied in der Gesamtbewertung der Opera Vertical am Hochkönig und der Spätlese an der Steinplatte festzustellen.

2.1. Schlussfolgerungen

Im zweiten Teil dieser Arbeit ist gezeigt worden, dass man die französische globale Bewertung nahezu vollständig auf den maximalen und obligatorischen Schwierigkeitsgrad zurückführen kann, wobei beide wesentlich zu der globalen Schwierigkeit beitragen (siehe untere Abbildung auf Seite 13). Bei der Analyse findet man kaum einen Zusammenhang zu anderen Routencharakteristika wie Länge und psychische Schwierigkeit. Vermutlich fließen die letzteren implizit in den maximalen und obligatorischen Schwierigkeitsgrad mit ein, so dass auch die globale Skala diese Kriterien zum Teil mit enthält. Die globale Bewertung hat deshalb ihre Berechtigung, denn sie ist einfach und kann Routen recht genau charakterisieren.

Anhang 1

Skalengesetze beim Klettern

Die Beziehung zwischen der Körperkraft F, der Körpermasse m und der Körperlänge L lautet

$$F \propto L^2 \propto m^{\frac{2}{3}}$$

weil der Muskelquerschnitt mit L^2 anwächst. Die für Kletterer wichtige Relativkraft ist daher gegeben ist durch

$$F_{rel} = \frac{F}{m} \propto m^{-\frac{1}{3}}$$
.

Fürs dynamische Klettern und besonders fürs Bouldern sind folgende Größen von Bedeutung:

die Beschleunigung des Körpers: $a = \frac{F}{m} \propto m^{-\frac{1}{3}}$

die Rotationsfähigkeit: Drehbeschleunigung: $\dot{\omega} = \frac{\text{Drehmoment}}{\text{Trägheitsmoment}} \propto L^{-2} \propto m^{-\frac{2}{3}}$

Extreme Bewegungen sind daher für leichtere Kletterer besser möglich.

Sehr bekannt ist das folgende Skalengesetz: für einen Sprung der Höhe h benötigt man die Energie mgh. Die Arbeit der Muskeln dafür ist $F \cdot L$, so dass

$$mh \propto L^3 h \propto L^2 L d.h. h \propto 1$$

h ist also unabhängig von L bzw. m. Wegen des Energiesatzes $mgh = \frac{1}{2}mv^2$ ist v ebenfalls unabhängig von L.

Die dynamische Reichweite R_D setzt sich aus Sprunghöhe h und der statischen Reichweite R_S zusammen. Da h nicht von L abhängt folgt

$$R_D \propto L$$

$$R_s \propto L$$

Das Drehmoment T, das auf dem Körper beim überhängenden Klettern wirkt, verhält sich wie

$$T \propto mL \propto L^4 \propto m^{\frac{4}{3}}$$

Dagegen wächst das vom Kletterer durch seine Körperspannung aufzubringende Drehmoment zur Kompensation von T nur proportional zu $L \cdot L^2 \propto m$, so dass auch hier leichtere und kleinere Kletterer einen Vorteil haben.

Anhang 2

Häufigkeitsverteilung der Kletterer, die einen bestimmten Schwierigkeitsgrad beherrschen

Die Diskussion von Verteilungen aus Produkten von Zufallsvariablen ist für sich genommen sehr interessant, ist aber hier nicht der Fokus, so dass nur kurz darauf eingegangen wird.

Es seien die f_i gleichverteilt zwischen 0 und 1: $f_i \sim R(0;1)$. Für das Produkt

$$S = f_1 \cdot f_2 \cdot ... \cdot f_n$$
 gilt $ln(S) = \sum_{i=1}^n ln(f_i) = -\sum_{i=1}^n q_i = -Q$.

Da $f_i=e^{-q_i}$ folgt $p(q)=e^{-q}$. q ist gammaverteilt, $q\sim Ga(\lambda,1)$ und deshalb gilt $Q=\sum_i q_i\sim Ga(\lambda,n)$, also

$$p_Q(Q) = \frac{1}{(n-1)!} Q^{n-1} e^{-Q}$$

und wegen $p_S(S) = p_Q(Q) \left| \frac{dQ}{dS} \right|$ erhält man

$$p_{S}(S) = \frac{1}{(n-1)!} ln \left(\frac{1}{S}\right)^{n-1}$$

und

$$F_{S}(S) = \int_{0}^{S} p_{S}(S')dS' = \frac{1}{(n-1)!} \int_{0}^{S} ln \left(\frac{1}{S'}\right)^{n-1} dS' = S \cdot \sum_{k=0}^{n-1} \frac{ln \left(\frac{1}{S}\right)^{k}}{k!}$$

Eine Translation S \rightarrow S - S0 ist einfach zu berücksichtigen, so dass

$$p_{S}(S) = \frac{1}{(n-1)!} ln \left(\frac{1}{S - S_{0}} \right)^{n-1} \qquad \qquad F_{S}(S) = (S - S_{0}) \cdot \sum_{k=0}^{n-1} \frac{ln \left(\frac{1}{S - S_{0}} \right)^{k}}{k!} \qquad \text{für } S \geq S_{0}$$

mit $F_s(S)$ aus Gleichung (5).

Anhang 3

UIAA- und französische Kletterskala und deren numerische Skalen

Die UIAA Skala lässt sich ganz natürlich durch folgende Transformation in eine numerische Skala U überführen:

das Pluszeichen erhöht den Grad, der durch eine ganze Zahl ausgedrückt wird um $\frac{1}{3}$ und das Minuszeichen erniedrigt den Grad $\frac{1}{3}$, z.B. $7 \rightarrow 7$, $7+ \rightarrow 7\frac{1}{3}$, $8- \rightarrow 7\frac{2}{3}$, $8 \rightarrow 8$, etc.

Setzt man (stückweise) Linearität zwischen der numerischen UIAA Kletterskala U und der numerischen französischen Skala F voraus, dann gilt

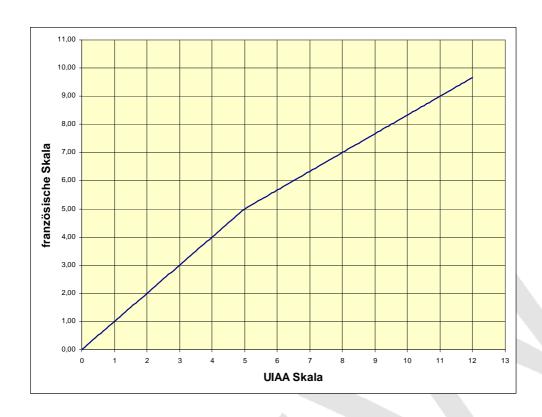
$$F(U) = pU+q. (A3.1)$$

Mit der Zuordnung 7a \rightarrow 7, 8a \rightarrow 8, etc. und der Eichung

$$F(8)=7a\equiv 7$$

$$F(11) = 9a \equiv 9$$

erhält man


$$p = \frac{F(11) - F(8)}{11 - 8} = \frac{9 - 7}{11 - 8} = \frac{2}{3}$$
 und $q = F(8) - \frac{2}{3}8 = 7 - \frac{2}{3}8 = \frac{5}{3}$

Die französische Skala in Abhängigkeit von U lautet also

$$F(U) = \frac{2}{3}U + \frac{5}{3}$$

Beide Skalen schneiden sich bei 5: F(5)=5. Würde (A3.1) auch für U<5 gelten, dann bekäme man $F(0) \neq 0$. Die französische Skala ändert jedoch ihre Steigung, so dass F(U)=U für U<5 gilt und einen Knick (siehe folgende Abbildung) macht.

Außerdem ist die franz. Skala feiner, sie hat zwischen 5 und 9b 27 Abstufungen, während die UIAA-Skala zwischen 5 und 12 nur 21 Abstufungen hat.

Transformation der französischen und der UIAA Skala in numerische Skalen F(U) und U

5,00 5 5,00 5 a 5,08 5,06 5 a 5,17 5,11 5 a+ 5,25 5,17 5 a+ 5,33 5 plus 5,22 5 5,42 5,28 5 5 5 5,50 5,33 5 b 5 5,58 5,39 5 5 b+ 5,75 5,50 5 5+ 5 5,83 5,56 5 5 5 5,92 5,61 5 6 1
5,08 5,06 5,17 5,11 5,25 5,17 5 a+ 5,33 5 plus 5,22 5,42 5,28 5,50 5,50 5,33 5 b 5,58 5,39 5 5,67 6 minus 5,44 5,75 5,50 5 b+ 5,83 5,56
5,17 5,11 5,25 5,17 5 a+ 5,33 5 plus 5,22 5,42 5,28 5,50 5,50 5,33 5 b 5,58 5,39 5 5,67 6 minus 5,44 5,75 5,83 5,56 5
5,25 5,17 5 a+ 5,33 5 plus 5,22 5,42 5,28 5,50 5,50 5,33 5 b 5,58 5,39 5,67 6 minus 5,44 5,75 5,83 5,56 5
5,33 5 plus 5,22
5,42 5,28 5,50 5,33 5 b 5,58 5,39 5,67 6 minus 5,44 5,75 5,50 5 b+ 5,83 5,56
5,50 5,33 5 b 5,58 5,39 5 5 5 5 5 5 6 minus 5,44 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 4
5,58 5,39 5,67 6 minus 5,44 5,75 5,50 5 b+ 5,83 5,56
5,67 6 minus 5,44 5,75 5,50 5 5 5 5 5 6 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7
5,75 5,50 5 b+ 5,83 5,56
5,83 5,56
5,92 5,61
6,00 6 5,67 5 c
6,08 5,72
6,17 5,78
6,25 5,83 5 c+
6,33 6 plus 5,89
6,42 5,94
6,50 6,00 6 a
6,58 6,06
6,67 7 minus 6,11
6,75 6,17 6 a+
6,83 6,22
6,92 6,28
7,00 7 6,33 6 b
7,08 6,39
7,17 6,44
7,25 6,50 6 b+
7,33 7 plus 6,56
7,42 6,61
7,50 6,67 6 c
7,58 6,72
7,67 8 minus 6,78
7,75 6,83 6 c+
7,83 6,89
7,92 6,94
8,00 8 7,00 7 a
8,08 7,06
8,17 7,11
8,25 7,17 7 a+
8,33 8 plus 7,22
8,42 7,28

8,50			7,33	7	b
8,58			7,39		
8,67	9	minus	7,44		
8,75			7,50	7	b+
8,83			7,56		
8,92			7,61		
9,00	9		7,67	7	С
9,08			7,72		
9,17			7,78		
9,25			7,83	7	C+
9,33	9	plus	7,89		
9,42			7,94		
9,50			8,00	8	a
9,58			8,06		
9,67	10	minus	8,11		
9,75			8,17	8	a+
9,83			8,22		
9,92			8,28		
10,00	10		8,33	8	b
10,08			8,39		
10,17			8,44		
10,25	1		8,50	8	b+
10,33	10	plus	8,56		
10,42			8,61		
10,50			8,67	8	С
10,58			8,72		
10,67	11	minus	8,78		
10,75			8,83	8	C+
10,83			8,89		
10,92			8,94		
11,00	11		9,00	9	a
11,08			9,06		
11,17			9,11		
11,25			9,17	9	a+
11,33	11	plus	9,22		
11,42			9,28		
11,50			9,33	9	b
11,58			9,39		
11,67	12	minus	9,44		
11,75			9,50	9	b+
11,83			9,56		
11,92			9,61		
12,00	12		9,67	9	С