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In this theoretical paper the force-elongation behaviour of a climbing rope in a heavy fall is 
investigated and compared with experiments. At the beginning of the fall the rope has to be 
described by a nonlinear elastic force with negligible friction followed by a fast relaxation into 
equilibrium dominated by friction. Observed fast second mode oscillations are explained by a 
continuum description of the rope taking into account its mass. 
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1. Introduction 
 
Modern climbing ropes have to fulfill many requirements. They must be light and flexible with high 
breaking strength and durability. They must be very elastic to reduce the peak forces of a heavy 
fall as well as highly energy absorbing so that the duration of the fall is as short as possible without 
back swings. This viscoelastic behaviour is investigated in this paper using measurements of the 
rope tension over time for standard UIAA falls. It is organized as follows. 
 
After presenting the experimental facts in the next chapter, we provide in chapter 3 the necessary 
theoretical background. The so-called Standard Linear Solid (SLS) model in a mechanical 
formulation is introduced together with more general viscoelastic integral equations.   
In chapter 4 the undamped harmonic oscillator (HO), the Maxwell model and the Kelvin model as 
special cases of the SLS are presented. From the HO the popular impact force formula follows, 
often used to describe the maximum tension of a climbing rope. However, the applicability of the 
HO model is limited because one also has to take into account friction as well as nonlinear forces.  
Therefore in chapter 5 the friction mechanism of a climbing rope is discussed in detail. An 
important result is that friction is time-delayed beginning only near the force maximum to agree 
with the experiments. For an explanation, an excursion to thermodynamics is made. In chapter 6 it 
is shown that a linear model with time-delayed friction gives already a reasonable description of a 
climbing rope. For a more accurate description, however, an additional nonlinear component of the 
force, yielding the so-called Duffing oscillator, is necessary. One fall experiment where mass and 
fall height are varied independently can only be explained with that nonlinearity. 
So far, the mass of the rope has been neglected. In chapter 7 a wave equation for the rope is 
derived which incorporates its mass in order to explain fast second mode oscillations which appear 
in the rope tension during the fall.  
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2. The experimental facts 

 
In the standardized UIAA test fall1, schematically shown in Fig.2.1, a climbing rope has to stop a 
80kg mass m after its free fall of a distance h = 2 x 2.3m. The rope length is L = 2.6m so that the 
fall factor f = h/L is 1.77, near its maximum value 2. 
In this heavy fall, the rope is strongly deformed and its tension F(t) is measured during the fall. We 
use very accurate measurements of2 in time steps of 0.5 msec (Fig.2.2, red curve, Edelrid Cobra 
10.3mm) where even small high frequency oscillations can be seen. They are important and are 
discussed in chapter 7. 
The maximum tension Fmax of the above rope is 9.2kN and occurs after t1 ≈ 160 msec. Fmax is an 
important characteristic and has to be documented for every climbing rope by the rope 
manufacturer.  
 
 

 
    Fig. 2.1. Geometry of the test fall: after a free fall of  

4.6m, a mass of 80kg starts to stretch the rope at 0.  
The rope tension is F and the elongation is y.  

 
 
Although the tension F(t) can be very complicated with elastic and frictional parts, it is simply 

related to the acceleration )t(y&&  by Newton’s equation of motion 

 

)t(Fmg)t(ym −=&&                         (2.1) 

 

Two integrations of )t(y&& with the initial conditions gh2v 0 =  and y0 = 0 lead to the velocity v(t) 

and the elongation y(t), both shown in Fig.2.2. The maximum elongation ymax is 1.14m and has also 
to be reported for every climbing rope.  
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Fig. 2.2. F(t) in red, v(t) in blue and y(t) in black. The specific rope  
is the Edelrid Cobra climbing rope (10.3mm diameter), but the time  
behaviour of F is similar for all climbing ropes. 
 

When F is plotted against y (Fig.2.3), one obtains a hysteresis loop, i.e. the rope shows different 
behaviour for stretching and un-stretching. The enclosed area of the hysteresis loop represents the 
dissipated energy into heat3.  
 

 
 

Fig. 2.3. Hysteresis between F and y. 
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3. Theoretical background 
 
3.1 The linear SLS model  
 
We first present in a mechanical formulation the so-called Standard Linear Solid Model (SLS) which 
is a common model for viscoelastic materials4 including climbing ropes5. It is shown in Fig.3.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        

   
Fig. 3.1. SLS model (one of several  
equivalent forms of the model) 

 
 

The model consists of two types of fibers. The first is pure elastic with a spring k1, the second is 
described by the so-called Maxwell model (viscous damping c and spring k2 in series). yi is an 
unobservable, inner friction variable.  
 
 
The SLS model of Fig. 3.1 has  
 

1. the kinetic energy  2ym
2
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T &=  , 

2.  the potential energy    mgy)yy(k
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3.  the dissipation function 2
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Using the Lagrange function L = T – V and the Lagrange functions  
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 one obtains 

the equations of motion 
 

mgyk)yy(kym 1i2 =+−+&&                   (3.1) 

 

( ) 0yykyc i2i =−+&                        (3.2) 

 
D is responsible for the transformation of mechanical energy into dissipated (heat) energy Ea given 
by 
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or         dtyc)t(E
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2
ia −==+= ∫ &                 (3.3) 

 
These equations are normally solved with the initial conditions 
 

g)0(y  ,v)0(y  ,0)0(y  ,0)0(y  ,0)0(y 0ii ===== &&&& . 

 
Eliminating yi and introducing the relaxation time  
 

2kc=τ  

 
and the spring constant  
 
k = k1 + k2      
 
one gets  
       

( ) ( ) mgykymykym 1 =+++ &&&&&&τ                        (3.4)  

       

The static elongation staty  can be immediately read off as 1kmg . The tension of the rope is 

yk)yy(kF 1i2 +−=  depending also on yi.  

 
The short time expansion for y(t) and F(t) using (3.4) is given by  
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In terms of viscoelastic theory, the SLS model consists of a Maxwell model described by 

εησσ && =+ 222 E  and a parallel spring (Hooke’s law) εσ 11 E= .  σ is the stress and ε is the strain. 

E1,2 are the moduli of elasticity and η is the viscosity which are both independent of the cross 
section q and the length L of the rope and can therefore be regarded as material constants. 

Because of   21 σσσ +=  one obtains            
 

0
EE

)EE(
E 21

21
2 =−+−+ ε

η
εσ

η
σ &&               (3.7) 

    
This equation can be converted into (3.4) by the assignments    
 

q

F
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q
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A different representation reveals the physical mechanism of the viscoelastic material. Integration 
of equation (3.2) and insertion into equation (3.1) yield:  
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Thus the stress in the rope is not an instantaneous result of the momentary strain (like in the 
undamped case), but due to memory effects the full time history of the strain process in (3.8)  
contributes to the momentary stress. 
 
In a phenomenological description one directly starts with a generalisation of the integral equation  
(3.8)  
 

'dt)'t(y)'tt(H)t(y)0(H)t(F
t

0
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by choosing an appropriate memory kernel H, called the relaxation modulus. For (3.8), H is given by 
the simple 
 

( ) ττ /t
21

/t ekk e)(H)0(H)(H)t(H −− +=∞−+∞=          (3.10) 

 
H(t) can be generalized in various ways4, for example by a sum of exponential functions. But H(t) 
has to be always positive and monotonically decreasing, i.e. in the limit 0t →  one gets 

0H)0(H)t(H 0 <≡≅ &&&  and therefore 
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Thus, for a general class of viscoelastic models and for small y the tension F is given by an elastic 
part H0·y followed by a negative dissipative term of second order in y which is responsible for a 
negative curvature of F(y). As a consequence positive or zero curvature implies that no damping 
exists.  
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4. Special SLS cases 
 
We now discuss some important special cases of the SLS with analytical solutions. Furthermore, an 
exact solution of the SLS model at its critical point (where the oscillatory solutions just disappear) 
is found in the Appendix. 
 
4.1. The undamped harmonic oscillator (HO) 
 
One gets the undamped harmonic oscillator (HO) from (3.4) for c = 0 (k = k1) as well as for c → ∞ 
with spring constant k = k1 + k2: 
 

mgkyym =+&&                (4.1) 

 
This equation has to be solved with the initial conditions v(0) = v0 and y(0) = 0. The solution is:  
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A fall of the height h results in a fall velocity gh2v 0 =  of the mass m.  

 
With the modulus of elasticity E = L·k/q   one gets the well-known formula6 for the maximum rope 

tension maxmax kyF =  which occurs at t1 which is equal to t2 in the case of the HO: 

 
2222222

0max gmmgEqf2mggmghmk2mggvmmgF ++=++=+⋅+= ω       (4.4) 

 
using the already introduced fall factor f=h/L. Because E is a material constant, Fmax only depends 
on the fall factor f. For constant f, an increasing fall energy mgh is compensated by the rope which 
becomes less stiff when L increases. The duration of the impact is approximately given by 

2Eq

mL
t2

π≅  independent of v0. 

 
On the one side the angular frequency ω can be calculated from the static elongation staty  by 

stat
stat

y

g=ω , but on the other side from (4.4), )mg2F(F
mv

1
maxmax

0

−=ω . If the HO model would 

be valid, both ω would be equal. For our specific climbing rope with a relative ystat/L ≈ 7%, 

however, one obtains 1
stat sec7.6 −=ω  and 1sec8.10 −=ω  showing the deficiencies of the HO. 
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Elimination of the spring constant k from equation (4.8) by means of maxmax yFk = yields 

 

max

2
0

max

max

max

y

mv
mg2

y

yh
mg2F +=

+
=   (4.5)   

 
expressing energy conservation. Independent of any material parameter, this relation between Fmax 
and ymax should be valid for all ropes, but it is not observed in reality. 
 
 
4.2. The Maxwell and Kelvin models  
 
The Maxwell model appears from the SLS model for k1 = 0. It is a good approximation of the SLS 
model for small times and has an exact analytical solution. Because of the lacking k1 it cannot 
describe the long time properties of the SLS.  
 

With the already introduced terms mk 2
2
2 =ω  and c2k 2=κ  equations (3.1) and (3.2) are now:  
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With the new variable z = y – yi, one obtains its equation of motion 
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F can also be expressed by z 
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The exact solution of (4.9) is given by 
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using the initial conditions 0v)0(z =&  and 0)0(z =  and with 22
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To first order in 2/ωκ  we get the maximum tension 
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From energy conservation the absorbed energy is given by  
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κ−≅ , we obtain for 1/ 2 <<ωκ  the well-known result of the damped harmonic 

oscillator: 
 

( )t2
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The Kelvin model is obtained from (3.4) in the limit k2 → ∞: 

 

mgykycym 1 =++ &&&             (4.15) 

 
which is the same equation as (4.8) taking into account the changed parameters. The initial 
conditions are the same, so (4.11) is also the solution of (4.15). 

At the beginning of the rope stretch (t=0), friction causes a discontinuous change of 0cv in the 

tension which is not observed for climbing ropes.  
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5. Time-delayed friction and adiabatic stretching 
 
We are now prepared to discuss the experiments from chapter 2.   
In these experiments F(y) linearly increases for small y (Fig.2.3). This is consistent with the general 

result (3.11) for the tension 2
000 yv2HyHF &−≅  for small y. The linear elastic part yH0  is now 

determined from the experimental F(y) by linear regression and then subtracted from F. The 

resulting dissipative remainder y kF − (we use the more common spring constant k instead of H0) is 

compared with the Kelvin model, the HO and the SLS model in Fig.5.1.  
 

  
 

Fig. 5.1. The measured F-ky with 1sec5.9mk −==ω   

 (red curve). The regression range for the determination of the initial  
slope mω2 is chosen between 0<y<0.8m in order to take into account 
a part of the nonlinear tension. F-ky of the Kelvin model  
(dotted for t< t1) and of the HO (dotted for t>t1) are shown in blue.  
The black curve represents the SLS model. 

 
None of the models can explain the measured y kF − . But it is striking that the frictionless HO for 

t<t1 together with the Kelvin model for t>t1 is a surprisingly good combination suggesting that there 
is little or no friction for t<t1. There are two further indications of time-delayed friction. 
For larger elongations, as already mentioned dissipation leads to a negative curvature of F in 
contrast to the measured F, which has a positive curvature almost up to Fmax . 
Furthermore, friction is responsible for a time difference Pt = t2 - t1 between the times of the force 
and elongation maxima. The very small experimental value of Pt/t1 = 0.157 also indicates low 
friction until the force maximum is reached.  
To explain this time-delayed friction we consider the thermal properties of the rope.  

The first law of thermodynamics FdydQdU +=  states that the change of the internal energy dU of a 
system is given by the added heat dQ and added work Fdy=kydy done on the system. It is 

furthermore assumed that TCU L= is only a function of temperature with the specific heat at 

constant length ( )
LL TUC ∂∂= . 

Statistical mechanics elastomer models 7,8 lead to a linear temperature dependence of the spring 
constant k(T) = αT. This temperature dependence is the reason for the contraction of an elastomer 
when heated in contrast to most other materials.  
During stretching under isothermal conditions, work Fdy>0 is done on the rope and therefore heat 
flows outwards (dQ<0). In the fall experiment, however, there are no isothermal equilibrium 
conditions because the rope is stretched very fast. Rather, adiabatic conditions prevail without 

immediate heat exchange with its surroundings, i.e. ydyTdTC0dQ L α−=≅ .  

              
 
 
 
 
 
 
              F-ky 

                              t 
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Integrating this equation, one gets a temperature increase from T0  to ( ) C2yexpTT L
2
max01 α= . For 

elastomers like rubber bands this temperature increase is well known and can be tested easily by 
stretching a rubber band using the lips as a temperature sensor. 
All the work which was done by stretching the rope is now reversibly stored in its internal energy 

( )01L TTCU −= . But because of the temperature difference, there must be eventually a heat and 

entropy exchange with the surroundings. This exchange process starts with a time-delay near the 
maximum of the force Fmax and can be viewed approximately as a jump from Fmax to a lower force 
almost at constant length (dL=0). No work is done, i.e. FdL = 0, but heat ( ) 0TTCUQ 10L <−=−=  is 

flowing outward. Together with a second adiabate for the rest of the motion, the stretching-
unstretching process of the rope is reminiscent of a part of an Otto cycle (Fig.5.3)9.   
 
 

 
Fig.5.3. Hysteresis as a thermodynamic process approximated by an  
Otto cycle (blue).In contrast to an isothermal process with a linear force  
one has an adiabatic process with a nonlinear force ( )L

2 C2yexpyF α∝ .  

There is a strong drop in F almost at constant length where heat exchange  
with the surroundings takes place. 

adiabates 

isometric dL=0 
 
 
 
 
 
               F(y) 

                                  y 
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6. Models with time-delayed friction 
 
6.1. The linear Kelvin model 
 
We have shown that two regions with and without friction can be distinguished, so that the Kelvin 
model can be described piecewise by  
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compact notation of (6.1a) is possible: 
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The initial conditions and the conditions at time t1 are 
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The solution for t ≤ t1 is given by (4.2) and the solution for t > t1 can also be easily calculated with 
the result 
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with 22
11Ω δω −= . The static case is the same as for the HO. 

Because we are close to the aperiodic limit δω =1 , this solution is also given for t>t1 
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The tension ymmgF &&−=  is obtained simply by differentiating (6.4) twice and describes a relaxation 

process into equilibrium for t>t1 approximately given by  
 

)tt(2
max

1eF)t(F −−≅ δ        

 
with a relaxation time of 1/2δ. In Fig.6.1 the theoretical F is compared with the data. The cusp 
seen in this figure comes from the spontaneous onset of friction at t1. The energy absorption rate is 

given by [ ] )t-(tΦe)t-(tmv2)t-(tΦym2)t(E 1
)t-(t22

1
2
01

2
a

1δδδδ −≅= &&  and occurs on a time scale of 1/δ. 
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   Fig.6.1. F as a function of t. The experimental curve in red, the 

theoretical one calculated from (6.4) with  δ=ω1=9.5sec-1 in blue. 
 

 
 
6.2. The nonlinear Duffing oscillator 
 
As seen from Fig.6.1 the stiffness of the rope increases for larger deformations which cannot be 
explained by a linear F(y). A statistical physics approach leads to a more general F(y) for 
elastomers valid also for large deformations.  In this approach, tension is related to elongation by 

the Langevin function L  [16] which has the expansion  )y(Oykky)y(L)y(F 53
3

1 ++=∝ − with a force 

term proportional to y3 after the linear term. An additional y3-contribution to the force comes from 
the adiabatic process. We neglect the change of this force term due to the nonadiabatic backward 
motion of the rope.  

Adding the nonlinear term 32
3yω to the equations (6.1) we obtain 

 

 gyy)y(Φy2y 32
3

2
1 =++−+ ωωδ &&&&                    (6.5) 

 
called the Duffing oscillator. 

The rope tension is given by )y(Φym2ykykF 3
31

&& −++= δ  with the nonlinear force constant 
2
33 mk ω= . The step function Ф at t1 where y&  changes its sign could be replaced by a smoother 

version of Ф. That would lead to a slightly better fit without the small cusp at F(t1) but also to an 
unnecessarily more complicated model. 
The equation (6.5) allows the determination of the parameters ω1 and ω3 for times t < t1 by 

regression methods. Once ω1 and ω3 are known, the conservative force 3
31 ykyk +  can be separated 

and the friction force )y(Φy2 && −δ  is immediately obtained. All forces are shown in Fig.6.2. 

 

   
 
 
 
 
    F(t) [N]

    t [sec] 
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Fig.6.2. The rope tension F (black) as the sum of the elastic  
force (red) and the friction force (magenta).  

 
 
The numerical solution of equation (6.5) is presented in the next Fig.6.3. In Fig.6.4, a comparison 
between the calculated and experimental hysteresis of F and y is shown.  
 
 
 

 
 

Fig.6.3. The rope tension F, the elongation y and the velocity v calculated by (6.5) in blue compared  
with the corresponding measured F,y,v in red. The parameters are ω1=8.6sec-1, ω3=4.5(m·sec)-1,   
δ=8.6sec-1.  Friction begins at t1, determined by v(t1)=0. Without ω3, the damped oscillator  
would be exactly at its critical damping point with the fastest possible approach to the rest position. 
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Fig.6.4. Comparison between the calculated (6.5) and experimental hysteresis 
    of F and y. 
 
 
 

Multiplying the friction force by the velocity )t(y& , one obtains the energy absorption rate )t(Ea
& . 

Note, that )t(Ea
&  depends on the underlying model. For the SLS model with its internal friction 

variable it has to be calculated differently. In Fig.6.5 a comparison with the theoretical rate 

)y(Φym2)t(E 2
a

&&& −= δ  is shown. 

 
 

 
     

Fig.6.5. Comparison between the measured and calculated  
energy absorption rate. 

 
 
 
The above calculations have been performed also for the Beal Joker rope which is known as a 
rather soft rope (Fmax= 8.1kN, ymax=1.36m) different from the Edelrid Cobra.  
The agreement with the measured F(t) is as good as for the Edelrid Cobra but with changed 
parameters as seen in the following table. 
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 ω1[sec-1] ω3 [m
-1·sec-1] δ[sec-1] ω3/ ω1[ m

-1] 
Edelrid Cobra 10.3 8.6 4.5 8.6 0.523 
Beal Joker 9.1 7.1 3.7 7.4 0.521 
 
Note that the ratio of ω3/ ω1 are the same for both ropes.  
 
The static elongation of the Duffing oscillator is only slightly different from the linear case and thus 

given by 2
1stat gy ω= . With the above ω1=8.6sec-1 one obtains a relative static elongation of 5%. 

This value is not far from the observed one of about 7%.  
 
 
6.3. The nonlinear Fmax  
 
In the fall experiments of10 the fall factor f and the mass m have been varied independently from 
each other.  The HO impact formula for Fmax (4.4) written as 
 

 2max g
m

f
gEq2g

m

F
++=              (6.6) 

 
is only a function of the ratio f/m. If this formula would be correct, all measurements represented 
by circles in Fig.6.6 would lie on one curve. However, Fmax/m is a function of both f and m, and a 
whole family of curves emerge. The numerical calculation of Fmax from (6.5) is also shown in Fig.6.6 
and is in agreement with the data.  
 
 
 

 

 
 

         Fig.6.6. Measured (circles) and calculated F/m-g as a function of mf .   

        The masses vary from m=80kg (blue), m=91kg(black), m=102kg(red),  
        m=114kg(blue), m=125kg(black), m=137kg(red). 

 
 
In the following an analytic approximation of Fmax and ymax for g > 0 is given. Note that an exact 
solution is possible for g=0. Energy conservation and the definition of Fmax lead to  
 

4
max

2
32

max

2
1

max
2
0 y

4
y

2
gyv

2

1 ωω +=+           (6.7a) 

3
max

2
3max

2
1

max yy
m

F
ωω +=                    (6.7b) 

 

 
 
 
 
         
                      
F/m-g 

                                           mf      



 

www.SigmaDeWe.com                                 © 2015 Ulrich Leuthäusser                                                 page 18 
      

The solution of (6.7a) for a linear force is already known and its first order approximation in g is 
given by 
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Looking for a solution of (6.7a) which is correct to first order in g and 2
3ω  with the ansatz 
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one obtains after collecting all terms of O(g) and O( 2
3ω )  
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ymax from (6.8) with A and B is now inserted into the following expression: 
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Ω2  is chosen such that the correct form of linear Fmax is preserved. Its solution is given by 
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Ω agrees with the exact solution for g = 0 in second order of ω3. Furthermore, it depends on the 
amplitude v0/ω1, typical for nonlinear systems.  
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resp. 
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Because of the terms 
m

f
m2  and 

m

f
m2 , Fmax/m is no longer a function of f/m alone leading to a 

set of the curves seen in Fig.6.6.  
In Fig.6.7 the approximation (6.11) is compared with the exact solution for Fmax for 3 different 
masses 80kg, 100kg and 120kg as a function of the fall factor f. The relative error is always smaller 
than 8%. 
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     Fig.6.7. Comparison between the exact Fmax (red curves)  

and its approximation (6.11) in blue as a function of the  
fall factor f for different masses m = 80kg, 100kg and 120kg.  

 
 
7. Elastic continuum description of the rope 

 
So far the mass mrope of the climbing rope has been neglected. In this chapter it is shown that mrope 
is responsible for the small oscillatory motions of F(t). 
Starting with a discrete description, we use the equations of motions of a linear chain of n small 

masses µ without friction and a spring constant k  between two small masses (Fig.7.1) 
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Fig.7.1. Part of a linear chain of small  masses µ with  
a large mass m at the end at position n. 
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For µ = 0 the old HO equation   mgu
n

k
um nn =+&&  is regained with un(t)=y(t), the spring constant 

n/kk =  of n serial connected springs with k . In the continuum limit 
x

)t,x(u
uu n1n ∂

∂→−+  we get 

from (7.1) the elastic wave equation  
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for longitudinal oscillations with the velocity of sound  ρEcs = , the mass density 
Lq

mrope=ρ  and 

the mass of the rope mrope = nµ. At x = L the continuum form of the last equation of (7.1) for u(L,t) 
(= y(t)) is given by 
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Neglecting g and looking for oscillatory solutions with the separation ansatz u(x,t) = X(x)T(t) for 

(7.2) one obtains  2
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The general solution of X(x) is given by ( ) ( )xsinCxcosCX 21 κκ += . From the fixed end boundary 

condition X(0) = 0, X must be of the form ( )xκsinCX 2=  so that from (7.4) one has the equation 
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follows. Thus the κ1  mode describes the already known oscillation of the large mass m with the 
frequency of the simple HO. The κ2  mode with frequency   
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describes the fast oscillation of the rope seen in Fig.7.2 and Fig.7.3 and depends only on the 
properties of the rope.  The ratio 
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with mrope = 177g (Edelrid Cobra) can be compared with the measurements. From the initial slope of 

F(y) we get 1
1 sec6.8 −=ω , so that equation (7.7b) gives  1

2 sec574 −=ω . The measured frequency 

of the κ2  mode for small times is 1
2 sec580ˆ −=ω  in excellent agreement with the theoretical result 

(Fig.7.2). 
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  Fig.7.2. The second mode oscillation of the residuum k1y + k3y

3 –F at the  
beginning of the fall with an angular frequency (blue curve) of 580 sec-1.  
Note that also the third mode is visible.  

 

Near the force maximum Fmax, the measured fast oscillation, given by 1maxF
2 sec740ˆ −=ω , is 

increased by about  27.5% relative to 2ω̂  for small elongations (Fig.7.3).  
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Fig.7.3. The second mode near Fmax with an angular frequency of 740 sec-1.  

 
 
This can also be explained by the nonlinear model. The changed frequency at Fmax is  
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from equation (6.10) which has to be used instead of 1ω  and yields a relative frequency increase of 

1
Ω

1

−
ω

 ~ 29% , again in excellent agreement with the experimental value. 

Finally, we present without calculation the result of )t,L(u&&  for small mmrope  
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with an amplitude ratio of 045.0
m

m3 rope ≅
π

 that is also conform with the experimental data. 

 
 
8. Conclusions 
 
The stress-strain behaviour of a climbing rope for heavy falls like the UIAA test fall can be 
explained by a relatively simple nonlinear viscoelastic model. 
Specifically, our conclusions are the following: 
 
1. The usual viscoelastic models like the SLS model where friction starts with the beginning of the 
fall cannot accurately describe the rope tension vs. time. 
 
2. Because of the high fall velocity, adiabatic conditions prevail with a time-delay of the internal 
friction in the rope. The friction comes only into play after the force maximum has been reached. 
After that maximum, there is a fast force drop, almost without change of length where the stored 
energy is dissipated. Therefore the behaviour of a climbing rope during a fall is thermodynamically 
reminiscent of an Otto process.  
 
3. The time-delay of the friction implies that at first only conservative forces are acting. This 
allows the determination of the force constants by regression methods. It turns out that a strong 
nonlinear force proportional to the elongation cubed is present. 
 
4. Both time-delayed friction and the nonlinear force term lead to a Duffing oscillator which 
describes the measured forces-time curves very well. It can also explain an experiment measuring 
Fmax with varying fall masses and fall factors, where the linear model fails. 
 
5. The precise measurements show fast oscillations of the second longitudinal mode coming from 
the rope mass. Its frequency for small elongations and its increased frequency near the maximum 
elongation as a nonlinear effect allows an independent determination of the force constants. 
 
The achieved understanding of the rope properties is also a necessary condition for a better 
understanding of the important rope fracture process of successively executed falls discussed in a 
future paper. 
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Appendix: Exact solution of the SLS model at its critical point 
 
Because there is no overshooting in the measured F(t) (Fig.2.2), realistic rope parameters are near 
the critical damping point without oscillations. The SLS model is now solved at this point. 
 
We start with the Laplace transform of the SLS equation of motion (3.4)  
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To solve this equation one has to calculate the roots of the cubic equation of the denominator 
which is in principle possible. At the critical point the solution is much easier, because only real 
and equal roots γ of the denominator exist11. It corresponds to the critical point of a Kelvin model 
(or damped HO) where the oscillatory solutions have been just disappeared and where damping 
provides the quickest approach to zero.  
 
γ satisfies the following equation 
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with the solution:  
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Here the angular frequency m)kk( 21 +=ω was introduced. Because of the small k1, the critical 

SLS model is close to the critical Maxwell model. 
For g = 0 (a lengthy solution is also possible for g >0) one gets 
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which leads after inverse Laplace transformation to 
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with the maximum values of y&&  and y 
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occuring at times 
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Eliminating γ from (4.4b) and inserting it in (4.4a) one gets   
max

2
0

max
y

mv
672.0F = . Very surprisingly, it 

turns out that the relation is also exactly valid for g>0. The absorbed energy until t1 is given by 
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independent of γ. In this aperiodic case about one third of the initial energy until force maximum is 
dissipated. 

 
     Fig.A.1.  F(t), v(t) and y(t) for the critical SLS model  

for γ=12. A satisfactory fit with the measured F, v and y  
(see Fig.2.2) is not possible.  
 

 
 

Fig. A.2. Typical round shaped hysteresis of the  
SLS model using γ=12. 
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The critical SLS model can also be used to describe time-delayed friction when calculated with the 
changed initial conditions (6.2). 
Te solution for t>t1 is given by 
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Although the physics of this model differs from the Kelvin model, it can also approximately explain 

F(t) and y(t) for t > t1. Its energy absorption rate aE& , however, is much more abrupt and faster than 

that of the Kelvin model (Fig.A.3).  
 
 
 
 
 
 

 
 

Fig.A.3. The energy absorption rate of the critical SLS 
model (red) compared with the  Kelvin model (blue)  
both with delayed friction. 

 
 

Unfortunately it is not possible to calculate aE&  from the measured F alone, because it depends on 

the underlying model. The aE&  for the SLS model is determined by its internal velocity iy& . 

Expressing iy& only by observables, the energy absorption rate is given by ( )22kFyc && −  different from 

that of the Kelvin model. In contrast to the Kelvin model, the critical SLS model is very soft and its 

static elongation 
2

g3

γ
  cannot explain the experimental elongation.   
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