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In this third paper on physics of climbing ropes the full equations of motion for a 

fall in a climbing rope are set up and solved when both internal viscous friction 

and external dry friction between the rope and one anchor point are taken into 

account. An essential part of the work discusses how the belayer can control the 

fall by adjusting the rope slip in the belay device. The theory can fully explain 

measurements of the maximum impact force, the force on the belayer and on 

the anchor point with and without rope control. 
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1. The rope model with viscous and dry friction 

In the first paper [1] we discussed mainly the internal viscous friction of a climbing rope. In the 
second paper [2] the consequences of external dry friction have been analyzed. Here, both 
types of friction are combined. Viscous friction, dry friction and the elastic properties of the 
rope are necessary to calculate correctly the forces that occur during a fall with one anchor  
(protection) point and to explain precise measurements which are now available [3]. The paper 
can be read independently of the first two papers. 

Before we describe our rope model in more detail, it is interesting to have a closer look at the 
rope on a microscopic descriptive level. A climbing rope is made of polymer fibers of the type 
polyamide whose molecular chains show entangled structures much like cooked spaghetti.  

A single chain molecule (i.e. one spaghetti) consists of identical chemical components which 
can be easily untangled, i.e. straightened, by an external force. After removing the external 
force, the chain molecules quickly contract again which leads to high elasticity. This is due to 
entropy, a measure of disorder of a system. Because of entropy a polymer quickly returns to 
this statistically favorable, entangled state of high entropy. One therefore speaks of entropic 
elasticity. Because higher temperatures increase this effect, entropy is also responsible for the 
shrinkage of a polymer when it is heated, unlike most other materials which expand under heat 
(this is also the reason why climbing shoes, also made of polymers, hurt so much when the sun 
shines on them). 

The individual chain molecules form a network mesh and (depending on the vulcanization 
grade) rub against each other, so that polymers also show viscous behavior in addition to their 
elastic behavior. This is extremely desirable, because without this internal friction there would 
be no energy absorption of the climbing rope. 

If both elastic and viscous behavior is present, we speak of a viscoelastic material. After the 
removal of an external force such a material behaves similarly to an elastic material (i.e. it 
contracts immediately), but unlike the elastic material it returns to its original state with a 
time delay. This is an example of a memory effect, because although the force is already zero 
the viscoelastic material is still moving. Memory effects always lead to energy dissipation. In 
addition, the equations of motion for stress and strain in viscoelastic materials are integral 
equations. This rather abstract but elegant phenomenological description is equivalent to a 
very intuitive description by means of viscoelastic theory which is using mechanical models of 
springs and damping elements. In a modular way one can simulate complex behavior of 
viscoelastic materials with any arrangements of springs and damping elements.  

Fortunately it turns out that a relatively simple SLS (Standard Linear Solid) model in form of a 
three-parameter model is sufficient to describe a climbing rope. 

In Fig.1-1 a SLS model is applied on each side of the anchor point. It consists of two different 
springs and one damping element. The spring which is parallel to the damping element is 
responsible for the long term behavior (2-3 sec) of the rope. For the more interesting shorter 
times (0.1-0.3 sec) before and shortly after the maximum impact force occurs, one actually 
needs only two parameters for the description. 

For the complete description of Fig.1-1 one needs the following parameters which can be 
calculated from the three length-independent material parameters E1, E2, and η:  

                                                 
[1] U. Leuthäusser, Viscoelastic theory of climbing ropes. http://www.sigmadewe.com/fileadmin/user_upload/pdf-
Dateien/Physics_of_climbing_ropes.pdf  

[2] U. Leuthäusser, Physics of climbing ropes: impact forces, fall factors and rope drag. 
http://www.sigmadewe.com/fileadmin/user_upload/pdf-Dateien/Physics_of_climbing_ropes_Part_2.pdf  

[3] DAV Sicherheitsforschung: Data, measurements and fall models. Garmisch-Partenkirchen, Germany 2011  
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The spring constants k1, k2 and the viscosity ηLq  are the parameters of the SLS model without 

the anchor point when the two SLS models in series are combined into one. 

 

   

Fig.1-1: 3-parameter model: all length-dependent parameters kij  
and ηi (see (1.1)) are determined by 2 moduli of elasticity E1 and E2  
and the viscosity η. mf is the mass of the rope segment in the area  
of the anchor point.  L, L1, L2, ρ and y0 are explained in the text. 

 

q is the cross section of the rope, L1 is the length of the rope segment before the anchor point 
and L2 is the length between the anchor point and the falling mass m. The total length of the 
rope is L = L1 + L2.   
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In addition there are the following variables: y22 describes the elongation of the rope at the 
position of the falling mass m, y21 is the displacement of the rope at the anchor point, y11 and 
y12 are unobservable internal variables, and y0 is a given function of time with which the 
belayer can control the fall. 

The orders of magnitude of the material parameters can be easily estimated: 

The static modulus of elasticity 
21

21

EE

EE
E

+
=  is determined by measuring the strain when a static 

mechanical stress is applied. We assume that the rope is stretched by a weight of 80 kg (the 
standard UIAA falling mass), and we further assume a typical static relative elongation εs of 
7.5%. For a climbing rope with 10 mm diameter it follows  
 

GPa 13.0
m

N
103.1

qε

mg
E

2

8

s

=




⋅=
⋅

= .   

 
It is interesting to compare this result with polyamide (2-4 GPa), rubber (0.01-0.1 GPa) or hemp 
(35 Gpa). A climbing rope therefore has a significantly smaller modulus of elasticity than a 
nylon thread which is due to the complex inner helical structure of the rope. 

E2 is determined by the dynamic elongation εd that, under standard UIAA fall conditions, is 
about 4 times greater than the static elongation. E2 can be estimated using (see [1]) 

GPa 38.0
qε

fmg2

qε

F
2E

2
dd

max

≈
⋅

=
⋅

≈  

 
with the fall factor  f = 1.77 for UIAA standard falls and Fmax  as the maximum impact force. 

Although εd is four times larger than εs, the maximum impact force is about ten times larger 
than the static force exerted by the standard weight (i.e., if a climber would measure his 
weight at the time of the maximum impact force, he would find his weight 10 times increased). 
So it is the other way around: a rope can be stretched statically far more than dynamically. The 
slower you pull, the larger is the elongation which is typical for viscoelastic materials. 

The viscosity can be estimated by multiplying the elastic modulus with the typical time in 
which a fall occurs (a few tenths of seconds): 

 

sec]GPa[ 1.0]GPa[ 2E[sec] 103~η ≅⋅ .  

 
This corresponds to a damping ratio of about 0.2, therefore a rope is clearly away from the 
aperiodic limit case where the damping ratio is equal to 1. Rubber, for example, is damped 
even less, and has a damping ratio between 0.01 and 0.05. 

In this rope model we also take into account the external friction between the rope and the 
anchor point. The external friction is, in contrast to the inner friction, velocity independent 
and is characterized by the parameter 

πµeρ =                              (1.2) 

 
with the friction coefficient µ. ρ is about 0.13 according to experiments that are discussed in 
section 7.  

 

2. The force system of the rope 

First, we examine the rope only at the anchor point, so that the reaction force dK and the 
friction force dR (see Fig.2-1) must be considered. We look at a specific location on the anchor 
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point where there is already a contact angle α with the rope. From there an infinitesimal 
change in angle dα is added. 

  

 

Fig.2-1: Forces on a section of the rope at an anchor point which is not  
necessarily circular. α is the contact angle at a specific location of the anchor  
point (e.g. as a function of arc length) and contains all angular changes of the  
rope up to there. 

 

Parallel to dR(α) we get for dα:   0)α(F)α(dR)αdα(F =+−+−   and 

perpendicular to dR(α) we have    0)α(dK
2

αd
)α(F

2

αd
)αdα(F =+−+− . 

With the friction force dR = µ·dK  it follows  )α(dRµ1αd)α(F)α(dK ==   and with the first of the 

two equations above follows αd)α(Fµ)α(F)α(dF)α(F −=+   or   αdµ
F

dF −= . The solution of this 

equation is   

 

)µαexp(F)α(F 0 −=                               (2.1) 
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F(α) 
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dR(α) 

dα/2 dα/2 
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known as the Euler-Eytelwein formula. The summation of all infinitesimal friction forces dR(α) 
yields:  

 

( ))µαexp(1FdR)α(R 0

α

0

−−== ∫                  (2.2) 

Using the force balance equation   0)α(R)α(FFdR)α(FF 0

α

0

0 =++−=++− ∫   it can be seen that 

the difference of the pulling force F0 and the holding force F(α) is equal to the sum of all 
frictional forces on the contact surface of anchor point and rope. 

 

 

 

Fig.2-2: Forces of the system "anchor point + rope": on the belay (FS),  
on the anchor point (FU), and on the rope (FR). The frictional force is  
an internal force of the system "anchor point + rope" and does not appear.  

 

 

FS force on  
the belayer 

FR restoring force of the 
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The force -F0, called RF  (see Fig.2-2), is the restoring force of the rope acting at the end of the 

rope with the falling mass. Although it is not an impact in the physical sense, FR is commonly 
called impact force. The force on the belay is  –F(α = π) and is called FS herein. The force on 

the anchor point is the sum of both forces RSU FFF += , which immediately follows from the 

equilibrium of forces of the simple geometric situation α = π in Fig.2-2. For α = π we also obtain 
for the frictional force  

 

RS FFR −=                    (2.3) 

 
 
By means of the above formulas one gets for the motion in the direction of the fall 
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with πµeρ = . Equations (2.4) are valid for the important maxima of FS and FR. For the motion in 

the opposite direction, however, there is   

 

)1ρ(FFρFFFR RRRRS −=−=−=                 (2.5) 

 
In the direction of the fall and for large friction (ρ >> 1) it follows R = -FR, i.e. FS = 0. Thus, the 
force on the belay disappears, and in turn the force on the anchor point is two times FR: 
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3. The equations of motion 

The easiest way to obtain the equations of motion for the situation in Fig. 1-1 is using the 
formalism of Lagrange [4]. The first part of the Lagrange equation L  

 

( ) ( ) ( ) ( ) 




 −−+−+−+−

−⋅+⋅=

22
2

01111
2

112121
2

211212
2

122222

2
21f

2
22

mgyyyk
2

1
yyk

2

1
yyk

2

1
yyk

2

1

ym
2

1
ym

2

1
L &&

                 (3.1) 

 
consists of the kinetic energy of the falling mass m and the mass of the piece of rope mf in the 
vicinity of the anchor point. The second part is the potential energy (square bracket of 3.1) in 
the form of various elastic strain energies and the potential energy of the falling mass in the 
gravitational field. The total friction is taken into account by the dissipation function D: 

                                                 
[4] e.g.: D. A. Wells, Lagrangian Dynamics. Schaum’s Outline Series, McGraw-Hill. 
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with the frictional force  

( ) ( ) ( )( ) ( ) ( )RS
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which contains the forces ( )122222R yykF −−=  and )yy(kF 112121S −= . 

 

For the case 0y 21 >&  R corresponds exactly to the second equation of (2.4) and for 0y 21 <&  to 

the equation (2.5). 

If one neglects the viscous forces, the above system of equations (3.2) can be well understood 
without the Lagrange formalism by setting up the balance of forces at the positions y11, y21, y12 
and y22 (see Fig. 1-1). 

 
Fig.3-1: v21 as a function of time [10-4 sec]  
for mf =0 (green) and mf = 0.06 kg (blue). 
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In equations (3.2), fast oscillations in the velocities 1221 y  and y &&  appear (see Fig.3-1) because of 

the small mass mf. This can easily lead to errors when the step size of the numerical integration 
routine is chosen too large.  

In addition, one cannot exactly determine how long the piece of rope at the anchor point, and 
thus its mass mf, has to be. It is certainly less than 1 meter, which means a very small, 
negligible mass mf < 0.06 kg.  

In section 4, therefore, the equations (3.2) are solved for mf = 0. We made sure that the results 
are the same for the crucial parameters y22, a22 and v22 regardless of whether they have been 
obtained for small mf or for mf exactly zero. 

 

3.1. Special cases  

Here the reference to the already discussed equations of the first two papers will be made. 

 

3.1.1. mf = 0 and internal friction equal to zero 

The internal friction can become zero in two different ways, either viscosity η = 0  or viscosity  

η → ∞. 

For 0η  and 0mf == , as well as for times up to the maximum impact force the frictional force 

is  ( )112121 yy)1ρ(kR −−−=  and one obtains   
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These are the equations (4) of ″Physics of Climbing Ropes″ [2] considering that the spring 
constants in series, k11 and k21 resp. k22 and k12, must be replaced by the spring constants  
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= . Eliminating also y21 yields (mf = 0 and η = 0) 
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For η → ∞ we obtain the same result as above but with different spring constants, because by 

a large η the spring constant k11 and k12 become ineffective, so that 
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3.1.2. External friction R = 0  

For R = 0 and by elimination of y21 and y11 the system of equations (1) of the work "Viscoelastic 
theory of climbing ropes" [1] is obtained  
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It should be noted, however, that this does not apply for arbitrary η1 and η2, but only if the 

relation 
1
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η =  is valid.  

 

3.1.3. Large external friction 

For ρ >> 1  y21 can no longer move, i.e. y21 = 0 and the following equations apply 
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y0 no longer appears, thus the belayer has no possibility of control.  

 
 

4. System of equations for mf = 0 and its solution 

Setting mf = 0 in (3.2), one obtains the following system of equations  
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The restoring force of the rope is given by  ( ) )ymmg(yykF 22122222R
&&−−=−−= . 

The force on the belay is  )yy(kF 112121S −= . 

The frictional force R is given by  ( ) ( ) RS221222112121 FFyykyykR −=−+−= . 

The force on the anchor point is  ( ) ( ) RS122222112121U FFyykyykF +=−+−= . 
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The system of equations (4.1) can be simplified as follows. If the falling mass has the initial 

velocity 022 v)0(y =&  (at the start of elongation), then one gets for times 0 <t <t1  (the time of 

the maximum of y21)  

 

( ) ( ) 0y  and    0yykyyk 21112121122222 >>−>− &  

 

Therefore, we obtain for the frictional force ( ) ( )112121 yyk1ρR −⋅−−=  and hence 

 

( ) 111222

21

22
21 yyy

ρ

1

k

k
y +−=                          (4.2a) 

 

After the time t2, 21y &  becomes negative and the relation ( ) ( )  0yykyyk 122222112121 >−>− (see 

Fig.4-1) applies, so the frictional force is ( ) ( )122222 yyk1ρR −⋅−= . y21 is then given by 
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Fig.4-1a: Time curve of y21 (blue) with the 2 dashed 
curves on which y21 can be located and between which 
a horizontal transition takes place. The red curve is v21. 
The vertical lines indicate the times t1 and t2. 
Fig.4-1b: The force k22(y22 - y12) acting on the right side  
of the anchor point (green) and the force k21(y21 - y11)  
acting on the left side of the anchor point (blue). 
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Between t1 and t2, y21 of (4.2a) remains unchanged at its maximum, with t2 determined by the 

intersection of y21 from (4.2a) with y21 from (4.2b). If 0y 21 ≠& , the only possibility would be to 

either continue moving on (4.2a) or to make a vertical transition from (4.2a) to (4.2b), both of 
which are physically unreasonable. 

Therefore one obtains 
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and for the velocity of y21 
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v21 = 0 does not imply R = 0, but instead of dynamic friction there is now static friction. 

 

This leads to 3 cases for  
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In the last expression, v12 still appears in v21 = f(v12 ) on the right side, therefore one has yet to 
solve the equation for v12 which can easily be done. 

With v12, v11 and y21 the equations of motion  
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can now be solved with the initial conditions  

022ijij v)0(y   except  , ji, allfor   0)0(y  and   0)0(y === &&  
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v0 is the velocity of the falling mass when the rope begins to stretch. In Section 7, the solution 
of (4.4) is compared with experimental data. 

In the figure below the maximum impact force, the maximum force on the belay and their sum 
were calculated with (4.4) and are plotted as a function of the friction coefficient µ. 

It is remarkable that, regardless of the internal friction η, the maximum force on the anchor 
point depends only slightly on the external friction, while the impact force increases sharply 
with µ and thus the force on the belay is decreasing. 
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Fig.4-2: The 3 maximum forces )black(F and )blue(F),red(F max
U

max
S

max
R  

as a function of the friction coefficient µ and related to their 
value at µ=0 The dotted curves are the analytically available 

values for η → ∞. 

 

The explicit expressions of the maxima of these forces for η → ∞ (dotted lines in Fig.4-2), 

using the effective spring constant 
2221
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kkρ

kkρ
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+
= , are given by: 
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The analysis up to the maximum impact force can be continued still further. As already shown, 
up to the maximum impact force equation (4.2) applies 

( ) 111222

21

22
21 yyy

ρ

1

k

k
y +−= . Inserted in the last equation of (4.4) we obtain 

( ) 0yykykρyρη 1222221111111 =−−+& .  Using the transformation  1121211111 ρηη  ,kρk  ,kρk =′=′=′  

and leaving 21222 η  and  k ,k  unchanged, the equations are brought in the form with ρ = 1 (no 

external friction present). Thus, for short times the external friction increases the rope 
parameters k11, k21  and  η11 in front of the anchor point and one can consider the rope without 
taking this point explicitly into account. 
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With this transformation the results of the work "Viscoelastic theory of climbing ropes" [1] can 

thus be used. One gets for the short-term development of the acceleration 22y&&    
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5. Energy dissipation  

The energies per unit time which are dissipated by internal and external friction are given by 
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Fig.5-1: The dissipated energy components of the  

external friction )t(ED
A

 (black), the internal, viscous  

friction )t(EV
A

(red) and their sum )t(E)t(E)t(E D
A

V
AA +=  (blue)  

up to time t. They are related to the total energy such  
that EA goes towards one for t >> 1 sec. 
  

 

For the parameters used here (see Section 7, equation (7.1)) the proportion of the external 
friction energy is about 1/3. 

 

6. Rope control by the belayer 

The aim of the rope control by the belayer is to minimize, for a given rope slip, the maximum 
force on the rope resp. on the climber. 
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For this purpose we first discuss a simple, analytically calculable model without internal 
friction. Then the general equations of motion (4.1) or (4.4) are used to numerically determine 
the effect of rope control on the impact force. 

 

6.1. A simple model with rope slip y0 and no internal friction 

The used terminology from control resp. optimization theory [5] is not accidental, because the 
mathematical approach is just the same. 

We start with equation (3.5): ( ) mgyy
KKρ

KKρ
ym 022

21

21
22 =−

+
+&& . Omitting the index of y and using 

the abbreviation  
21

21

KKρ

KKρ

m

1
ω

+
= , we obtain 

g)yy(ωy 0
2 =−+&&                             (6.1) 

 

The initial conditions are  0v)0(y,0)0(y == & . 

We take a control function as simple as possible so that an analytic solution of (6.1) is possible: 
the rope slip y0(t) begins at a time t0, runs at constant speed u through the belay device and 
stops at time te (see Fig.6.1 ). 

 
  Fig.6-1: y0(t) (red) and u0(t) (blue) 

 

Mathematically this can be expressed as: 
 

u)tt(Φ)tt(Φ)t(u

)tt(Φ)tt(u)tt(u)tt(Φ)tt(Φ)t(y

e00

e0e0e00

⋅−−=
−−⋅+−⋅⋅−−=

             (6.2) 

 

The step function Φ(t) is given by: 




≥
<

=
0t1

0t0
)t(Φ  

 

                                                 
[5] e.g.: M. Papageorgiou, Optimierung. Oldenbourg Verlag 1991 or 
A. Bryson, Dynamic Optimazation. Addison-Wesley 1999 

t 

  
 
 
 
 
 
       y0(t) 

       u0(t) 
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(6.1) can be solved by means of a Laplace transformation which leads to  
 

)tωsin(
ω

v
))tωcos(1(

ω

g
)t(y

ω

))tt(ωsin(
tt)tt(Φu

ω

))tt(ωsin(
tt)tt(Φu)t(y)u,t(y

0
2

0

e
ee

0
00

0

+−=






 −
−−−⋅−




 −
−−−⋅+=

            (6.3) 

 
where y0(t) is the solution without rope control (u=0). The acceleration is  
 

)tωsin(ωv)tωcos(g)t(a

))tt(ωsin()tt(Φωu))tt(ωsin()tt(Φωu)t(a)u,t(a)u,t(y

0
0

ee00
0

−=

−−⋅−−−⋅+==&&

          (6.4) 

 
With this the restoring force of the rope is given by  
 

))tt(ωsin()tt(Φωum))tt(ωsin()tt(ΦωumF

mg)u,t(ma)yy(ωmF

ee00
0
R

0
2

R

−−⋅+−−⋅−

=+−=−=
            (6.5) 

 

with 00
R mamgF −= . In the figure below, the reduction of the impact force by the rope control 

is illustrated for a typical fall. 

  

Fig.6-2: The black curve shows the time dependence of the impact  
force without control (u = 0). The red curve is the reduced impact  
force for t0=0.075 sec and te=0.3 sec with u = 3m/sec. The difference 
between the red and the blue dashed curve is the additional force due 
to the stop of the rope. The speed of the rope slip u is 3000 mm/sec 
(magenta). (ω = 6.25 sec-1, v0 = 9.185 m/sec, s = 67.5 cm (equation (6.8)). 

 

The impact force mg)t(maF 00
R +−=  for u = 0 stays positive far after the maximum of FR and is 

therefore reduced by the negative second term in (6.5). The third term includes the "stopping 

 

   

t 
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costs" and is exactly the time-shifted positive second term. One has, so to speak, to pay back 
the won reduction of the impact force at a later time which increases the time duration of the 
force. Nevertheless, the momentum (force integral over time) usually becomes smaller when 
u>0, because energy is withdrawn from the system by the rope slip. The law of energy 

conservation can be easily derived from (6.1) by multiplying this equation with y&  which leads 

to  
 
 

( ) ( ) 0'dt)'t(y)'t(yωmu)t(y)t(y
2

ωm
)t(mgy)t(ym

2

1

dt

d
0

t

0

22
0

2
2 =












−+−+− ∫&           (6.6) 

 

The last term  ( ) 'dt)'t(y)'t(yωmu 0

t

0

2 −∫   is the energy which is absorbed by the belay device.  

If the time of the maximum of a(t,u), max
at ,  is smaller than te, then we can write: 

 

( ) ( ) )tωsin(ω)tωcos(uv)tωcos()tωsin(ωug

))tt(ωsin(ωu)tωsin(ωv)tωcos(g)u,t(a

000

00

−−−
=−+−=

 

 
with the maximum impact force  
 

( ) ( ) mg)tωsin(ωugω)tωcos(uvmF 2
0

22
001 +−+⋅−=  

 
and the limiting case of the complete rope slip when u=v0 and t0=0.  

 

If the time max
at  > te, then we have  

 

( ) ( ) mg)tωsin(ωu)tωsin(ωugω)tωcos(u)tωcos(uvmF 2
e0

22
e002 ++−+⋅+⋅−=  

 
For the maximum of FR there are only these 2 possibilities, so that  
 

( )21
max
R F,FMaxF =                   (6.7) 

 

The aim now is to make max
RF as small as possible using the control parameters t0 and te for a 

given rope slip 
 

( )0e
max
0 ttuys −⋅==                   (6.8) 

 
At the chosen t0 and te and a given s, u is fixed and is thus no longer available as optimization 

parameter for the optimization of max
RF .   

The following Figure 6-3 shows the smallest possible max
RF  choosing the optimal t0 and te. The 

control velocity u becomes constant for large s and is then about 2/3·v0 (with the parameters of 
section 7).  te is practically constant for small s<1 m and increases only for s >1 m. The effect of 

s on max
RF  is particularly large for 0 < s < 1 m and approaches zero for larger s.  
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Fig.6-3: Optimal (smallest possible) maximum impact  
force FR [N] (green) as a function of the rope slip s [m] 
and the associated t0 [10-4 sec] (blue), te [10-4 sec] (blue), 
u [10-3 m/sec] (black). 

 

Fig.6-4 shows the impact force with optimal control as a function of time. For comparison, the 
impact force without control (u=0) is plotted in blue. 

0 0.2 0.4 0.6

0

2000

4000

6000

0

0 0.2 0.4 0.6

0

2000

4000

6000

0.2

0 0.2 0.4 0.6

0

2000

4000

6000

0.4

0 0.2 0.4 0.6

0

2000

4000

6000

0.6

0 0.2 0.4 0.6

0

2000

4000

6000

0.8

0 0.2 0.4 0.6

0

2000

4000

6000

1

0 0.2 0.4 0.6

0

2000

4000

6000

1.2

0 0.2 0.4 0.6

0

2000

4000

6000

1.4

0 0.2 0.4 0.6

0

2000

4000

6000

1.6

 

Fig.6-4: Time dependence of FR (green) from equation (6.5) for 9 different distances of  

rope slip from 0 to 1.6 m. The parameters t0 and te are chosen optimally. 0
RF  for u = 0 is  

plotted in blue as a reference curve. The black curves are the optimal rope slip velocities  
u [in 10-3 m / sec]. 
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We also give an analytical approximation for the impact force reduction due to rope control. 
First, as can be seen from Fig.6-4, te is located always approximately at the maximum 
of FR for u = 0, i.e. at about 
 

ω2

π
te ≅ . 

 
Second, the two maxima of the impact force resp. the acceleration are always equal. As is 

intuitively clear, max
RF  is optimal when the two maxima of FR become equal in size (see Fig.6-4). 

This provides a relation between t0 and u: 
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Since max
RF  is given as a function of u, the following parametric equation between max

RF and s is 

possible, with u as parameter: 
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This approximation is excellent for s ≤ 1 m. 

 

For slightly smaller s, one can develop (6.10) for small s and one obtains for the impact force 
controlled by s: 
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00

222
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R                     (6.11) 

 

In this approximation, max
RF  is given by the familiar impact force formula ( )222

0 gωvmmg ++ , 

multiplied by a term linear in s whose strength is determined essentially by the factor 0vω . It 

is also intuitively clear that a particular s has a greater effect on a stiff rope with a large ω 
than on a rope with a smaller ω. A large v0, on the other hand, requires a larger s for the same 
impact force reduction. 

Looking at (6.11) for a slack rope of length δ (which some climbers regard as a kind of control), 

one must change gh2v0 =  to )δh(g2v 0 +=  because the fall height h is increased by the 

slack δ. On the other hand, mkω =  contains the length dependent k = EL0/(L+δ) which is 

slightly reduced by δ, so that for small δ/L one gets 
 

2222
0

max
R )mg(

L

δ
)f1(fmgEq2mggωvmmg)0(F +







 −+⋅+≈++=                    (6.12) 
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which for a fall factor f > 1, surprisingly, is reduced by slack rope. For single pitch routes, 
however, a fall factor f > 1 is not possible, so that slack rope must always be avoided in places 
where it is most commonly observed, namely in the climbing gym or the climbing garden.  

We also discuss a simple model for the case when the belay device is attached to the harness as 
shown in figure 6-5. During a fall the belayer with mass m0 is pulled up by the mass m of the 
falling climber. The belayer can jump upward with a velocity u and can thus control the fall. In 

the approximation of the undamped harmonic oscillator model ( mkω = ) one gets the 

following nice formula for the impact force which is presented without derivation: 
 

( ) ( )22
0

2
redred

HO
R g2uvΩmg2mF

~ +−⋅⋅+=     with   
red

2

0

0
red

m

k
Ω   und   

mm

mm
m =

+
⋅

=  ,  

 
This is to be compared with the familiar impact force formula (6.12) (see [1]): 
 

222
0

HO
R gωvmmgF ++= . 

 
mred is the reduced mass and, since it is always less than m, it reduces the impact force. Ω will 
be always larger than ω because of mred, so that the falls become shorter in time. u reduces the 
initial velocity v0 of the falling climber, thus reduces also the impact force.  

 

 

 

Fig.6-5: Simple model for belaying off the harness  
 
 

y 

v0 m 
 

m0 

 

y0 

u 
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6.2. Rope control with internal and external friction 

Similar to Fig.6-4, FR is shown in Fig.6-6 as a function of time using optimal rope control, when 
both types of friction are present. The graphs are the result of the solution of the equation 

system (4.4), followed by the minimization of max
RF  as a function of rope slip y0. The parameters 

used are those of section 6.1. 
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Fig.6-6: Time dependence of FR (green) from equations (4.4) for 9 different slide distances of the 
rope from 0 to 1.6 m. The internal friction is η=0.8·103 [Nsec/m], the external friction is ρ=1.46.  

The parameters t0 and te are chosen optimally, so that the maximum of FR is minimized. 0
RF  for u = 0  

is plotted as reference curve in blue. The black curves are the optimal rope slip velocities u [10-3 m/sec].  

 

Note that for larger s > 1 m no significant reduction of the impact force occurs (see the three 
lowest figures in 6-6). Moreover, the relatively early stop of the rope slip is remarkable (see 
Fig.6-7): when the slide times are too long, the force is no longer reduced but only prolonged. 
In addition, long slide distances feed energy to the system "climber + rope" that must also be 
converted into heat. 

A typical "force controlled" belay device will not stop near the force maximum, but only when 
the force falls below a certain limit. Probably this is the reason why the experimental impact 
force reductions are not optimal (see Section 7, Figure 7-9). 
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Fig.6-7: Enlarged fourth figure of Fig.6-6 with  
s = 60 cm. The end of the optimal rope slip y0  
occurs at an early stage near the force maximum,  
although the falling mass still has a high speed  
(dashed black) and the maximum elongation   
(dashed blue)is far from being reached. 
  

 

In the next Figure 6-8, the time variation of all dissipative energies is shown. These are all of 
equal magnitude and add up to the total energy for times slightly larger than 1 sec.   
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Fig.6-8: Time dependence in [10-4 sec] of the  
energy absorption at the belayer (cyan), by  
internal (green) and external friction (blue). 
The sum of all three dissipative energies is the  
red curve that asymptotically approaches the  
total energy (magenta). The rope slip is 51 cm. 
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7. Comparison with experiments 

In this section we compare the theoretical results, especially the solution of the equation 
system (4.4), with measurements carried out by the DAV Sicherheitsforschung [3]. 

The fall experiments are characterized by: 
 
Falling mass m = 82 [kg] 
Initial velocity of the falling mass v0 = 9.185 [m/sec] 
Rope length in front of the anchor point L1 = 6.95 [m] 
Rope length behind the anchor point L2 = 3.4 [m]             (7.1) 
Total rope length L = 10.35 [m] 
Parameter for the external friction ρ = 1.46 
 
All measurements discussed herein are based on a rope with the following parameters: 
 

k2 = 3.2·103 [N/m],      k1 = 1.8·103 [N/m],     
L

q
η   = 0.8·103 [Nsec/m].  

 
corresponding to 
 
E2 = 0.42  [GPa],        E1 = 0.24 [GPa],       η = 0.1 [GPasec] 
 

Figure 7-1 shows the measured curves of FR and FS and the associated curves from the theory as 
a function of time. The rope slip for this experiment is only a few centimeters and therefore 
negligible. 
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Fig.7-1: FR, FS and their sum FU at the anchor point when 
rope slip is neligible s ≈ 0. Measurements in blue, theoretical 

curves in red.  
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For the above experiment, the (not measured) elongation y22 at the falling mass, its velocity v22 

and its acceleration –a22 are shown in Fig.7-2. 
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For the same experiment (s = 0), Fig.7-3 shows the measured (blue) and calculated (red) ratio 

SR FF  of impact force to force on the belay. It was shown in section 2 that SR FFρ = is valid 

before the change of sign of the velocity and ρ1FF SR =  afterwards which is confirmed 

experimentally. In Figure 7-4, the friction force RS FFR −=  is shown. Again, the good 

Figb.7-3: The ratio impact force – belay force  

Fig.7-2: Rope elongation y22 [m] at the falling 
mass (green), its velocity v22 [10m/sec] (blue) 
and its acceleration –a22 [20m/sec2] (red) as a 

function of time. 
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agreement with the experiment indicates that the used simple Coulomb model of friction 
describes correctly a real fall. 
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Fig.7-4: Friction force R as a function of time 
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We now show 4 fall experiments with a larger rope slip s (increasing from 44 cm to 91 cm) and 
compare them with the theoretical results.  
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Figs.7-5 to 7-8: Measured curves (blue) and theoretical curves (red) for FR and FS as a  
function of time for various slide distances s.  

 

In the next Fig.7-9, all available experimental reductions of the relative impact force 

)0(F)s(F max
R

max
R  are shown as circles. )0(Fmax

R  was obtained by averaging over 4 identical 

experiments, so that )0(F)s(F max
R

max
R  can even become slightly larger than one for s → 0. The 

red curve is the maximum possible theoretical reduction of the impact force at a given s. The 
measured values must always be above or on this curve which is fulfilled except for one point. 

Experiment 29 Experiment 19 

Experiment 11 Experiment 24 

slide distance 0.91 m slide distance 0.72 m 

slide distance 0.44 m 

slide distance 0.51 m 
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It is striking that the measured reductions of impact force have a large spread and are clearly 
away from the optimal curve. 
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Fig.7-9: Reduction of impact force as a function of  
the rope slip for a total of 27 experiments (circles)  
and the theoretically maximum possible reduction  
(red curve). Most of the real world, controlled impact  
forces are clearly away from optimality. 

 
 
 

8. Conclusions 

The good agreement between theory and experiment shows that a linear viscoelastic SLS-model 
provides a very good description of a climbing rope. We could explain a whole series of 
different fall experiments with a specific rope that is characterized by two parameters (one 
modulus of elasticity and the viscosity; the second modulus of elasticity is only of minor 
importance for short times). 

The added external friction, which is also correctly described by our model and which can 
explain the measurements, turns the previously linear model into a nonlinear, more complex 
model. The figures 8-1 below show that both types of friction, external and internal, are 
important for typical falls with not too high fall factors. 

The familiar model of the harmonic oscillator (Fig. 8-1a) is insufficient to explain the forces 
that occur during a fall. The external friction (Fig. 8-1b) is responsible for the difference 
between the forces FR and FS. An increasing external friction leads to an increase of the force FR 
and to a decrease of the force FS on the belay with lower control possibilities of the belayer. 

The internal friction (Fig.8-1c) is important for the absorption of the fall energy, thus 
preventing the oscillation of the rope and also reducing FR substantially. Both types of friction 
combined (see Fig. 8-1d) can explain the forces on the falling mass and on the belayer well. 
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Fig.8-1a,b,c,d: Forces on the falling mass and on the belay as a function of time. The theoretically 
calculated curves are in red, the experimental, always identical reference curves, are in blue. 

 

 

An important part of the paper examines the reduction of the maximum impact force through 
the control of the belayer. The optimal rope control (with the best possible reduction at a 
given rope slip) allows a significant reduction of the impact force even at moderate slide 
distances (see Fig.7-9) and is carried out by stopping the rope slip relatively early near the 
maximum of the impact force. Since belay devices apparently fail to follow the optimal start 
and stop times, they can provide virtually only suboptimal results. 
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