
 

www.sigmadewe.com © 2023 Ulrich Leuthäusser page 1 

Frictional mechanics of knots 
May 2023 

 
Ulrich Leuthäusser 

ulrich.leuthaeusser@aon.at 
 
 
Abstract 
 
For some important knots closed-form solutions are presented for the holding forces which 
are needed to keep a knot in equilibrium for given pulling forces. If the holding forces become 
zero for finite pulling forces, the knot is self-locking and is called stable. This is only possible 
when first, the friction coefficient exceeds a critical value and second, when there is 
additional pressure on some knot segments sandwiched by surrounding knot segments. The 
number of these segments depends on the topology of the knot and is characteristic for it. 
The other important parameter is the total curvature of the knot. In this way, the complete 
frictional contact inside the knot is taken into account. The presented model can explain the 
available experiments. 
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1. Introduction 
 
Because of their eminent importance and ubiquity, knots have been and are being intensively 
investigated from a wide variety of aspects.  
First, there is an abstract mathematical approach known as knot theory [1]. It ignores the 
physical properties of knots and investigates their topological properties studying mainly the 
equivalence of one-dimensional closed curves in space. Nevertheless, it has applications 
including chemistry, biological and polymer physics, statistical mechanics and quantum field 
theory. Next, there is a more physics-driven approach, the so-called physical knot theory 
which [2] has received less attention than its abstract cousin and to which this paper belongs. 
In physical knot theory, knots are not treated as abstract, closed curves. Instead, a knot is 
mostly considered as a connection between two ends of a rope in order to investigate the 
tension and friction forces within the knot. Questions about its breaking strength and its 
stability can be answered in this way. Numerous important applications range from surgical 
knots to knots for sailing and mountaineering. Finally, there are some applied, non-
mathematical papers that are valuable from a practical point of view [3].  
 
In 1976, Bayman [4] asked, under which circumstances a hitch locks itself. That means, 
when it will withstand a pulling force without an opposite holding force. Using classical 
mechanics, he gave a criterion for this self-locking phenomenon. Maddocks and Keller [5] 
extended Bayman’s approach to knots and investigated the forces occurring in the knot in 
more detail. They got some testable results for simple knots or part of simple knots. 
However, experiments [6] do not completely agree with their predictions.  
In a recent paper [7], elements of mathematical knot theory have been combined with 
mechanics in order to get some topological criteria for the holding abilities of knots. In 
addition, measurements of the pulling force necessary to untie a knot for a given holding 
force were presented for several important knots. 
 
This work provides an analysis of the forces that arise in a knot when external pulling forces 
are applied. The holding forces necessary to keep the knot in equilibrium are calculated. For 

many of the here discussed knots, there is a critical static friction coefficient c  at which the 

knot behavior changes qualitatively. For friction coefficients c   the holding force 

becomes zero regardless of the strength of the pulling force. In this paper, a knot is called 

stable if it shows this behavior. For unstable knots there is no such c , that is, a holding force 

is always necessary to avoid that the knot slips. This stability has to be distinguished from 
structural stability, i.e. a strong deformation of the knot, a geometric change or even 
capsizing of the knot. Structural stability is a necessary condition for the above stability. 
The methods used here are classical equilibrium mechanics with Coulomb friction just at the 
verge of impending motion. As in Refs. [4] and [5], a perfectly flexible and inextensible rope 
material without any bending and torsion forces is assumed. Bending rigidity can be taken 
into account using an additional force term proportional to the bending angle. The bulky 
results, however, show no qualitative differences and are omitted. 
 
The paper is organized as follows. In the next section, the necessary preliminaries for the 
subsequent calculations are made. To treat the simultaneous contact of three knot 
segments, it is necessary to generalize the Euler-Eytelwein equation for this case.  
In section 3, a general procedure for the calculation of the appearing forces in the knot is 
presented. It will be shown that the ratio of holding and pulling force has a common structure 
for all investigated knots. Next, this ratio is derived for the most important knots (square knot 
and its relatives, etc.) and presented as closed-form formulas together with the critical friction 
coefficients. The question of why the granny knot is less stable than the square knot is 
answered. Furthermore, a relation to directed graphs is established, showing that feedback 
effects are necessary for a stable node. 
In section 5, the discussed knots are summarized and a comparison with experimental 
results is carried out. 
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2. A generalized Euler-Eytelwein equation and a self-locking mechanism 
 
In this section, the well-known Euler-Eytelwein equation [8] is generalized in a simple way for 
its application to knots. With this equation, it is possible to calculate the force F  that is 
necessary to pull a piece of rope over a curved surface to overcome both the opposing 
holding force and the friction force between rope and surface. The generalization introduces 
an additional external force Ne acting on that piece of rope. This allows to describe the 
contact of three rope segments where a sandwiched rope segment is compressed by two 
other rope segments.  
  
To derive this equation, consider Fig. 1 of an infinitesimal segment of a rope which in contact 
with another segment. μ is the friction coefficient for this contact. An infinitesimal external 

force edN  acts on this segment in negative y-direction and causes an additional friction force  

eedN  in tangential direction. 

    
 

 
           

         Fig.1. Free body diagram of the yellow infinitesimal rope  
         element with an additional external normal force dNe.   

 
 
The equilibrium force equations in x and y direction are given by 
 

eedNdNdF   ,           

edNFddN   . 

 

Replacing dN  in the first equation by the second and introducing the pressure 




d

dN

R
n e

e
)(

1
)(   with the local radius )(R  of the lower segment, one obtains 

 

  )()( 
 ee nRF

d

dF
 .                   (1) 

 

Without the external pressure )(en , the classical Euler-Eytelwein equation with an 

exponentially increasing )(F  is obtained. 

A the simple solution of Eq. (1) for a constant external pressure 
)( 01  


R

N
n e

e  for 

 10   is given by 
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


 eΘeΘ
N
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using the unit step function )(Θ . For a localized force eN  at 10   , Eq. (2) reduces to  

 

   1)()0()( 1

   eΘNeFF ee ,                    (3) 

 
which will be used later in the discussion of several knots. Consider a second rope segment 

above the first which moves with the same external force eN  in the opposite direction (now 

acting on both ropes). Then for e  , a factor 4 appears instead of a factor 2 counting the 

number of frictional contacts induced by eN .    

 
The second example (see  Fig. 2), as a part of an overhand knot, is a rope that, after passing 
over the cylinder A and reversing without friction its direction at B, presses within a certain 
angle segment β on itself. This interaction between different rope parts leads to self-locking 

where no holding force 1F  is necessary to oppose the pulling force 0F . 

 
 

 
 

Fig. 2. A rope in contact with a cylinder A within sector 
 . The rope is pressed by itself onto the cylinder A 
within sector β after it is frictionless reversed at B.
   

 
 

To keep it simple, a symmetric arrangement with equal friction coefficients e   is chosen 

(see Fig. 2). The additional pressure from the upper piece of the rope is given by 
 

  





 



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with   in the interval      
2

1

2

1
. The solution of Eq. (1) becomes 
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









  2

01 )sinh(21


  eeFF ,        (5) 

 
where the total contact angle    has been introduced. Because a pushing (negative) 

1F  is not possible, Eq. (5) is only valid for 01 F . 

Without a reversal of motion at B, the rope wraps around the cylinder (see Fig. 2), so that 
both parts of the rope move together in the same direction. In this case, Eq. (5) has to be 

modified, with    and with the replacement 2  . 

 

Eq. (5) has the typical structure which will later also appear for knots. The first term 
Φe 

 is 

the solution of the usual Euler-Eytelwein equation containing the friction contributions from 

the contact angles   and   coming solely from the rope tensions from a single contact. The 

second term describes the effect of the additional pressure on the sandwiched part of the 

rope in the -segment what makes self-locking possible. For every 0 , there is always a 

zero of Eq. 5 for a friction coefficient c which has to be calculated numerically. The 

transformation    swaps 0F  and 1F , the zero disappears and stability is lost.  As 

expected, a holding force is always necessary when the lower part of the rope is pulled.  
 
It is important to note that Eq. (1) in this form is only valid in a plane. If the curved surface is 

a space curve, d  has to be repIaced by dss)(  with ds as the infinitesimal arc length and 

)(s  as the curvature which is a function of s. One gets 

 

  )()( snFs
ds

dF
ee  .             (6) 

 
Integrating Eq. (6), the angle  in the Euler-Eytelwein equation becomes the so-called total 

curvature [9] 
 


L

dssΦ
0

)(                          (7) 

 

which is called contact angle here. L  is the complete arc length of the contact and Φ can 

therefore be expressed by the average curvature LΦ  .  

An example of a space curve which is needed in section 4 is a helix around a circular 
cylinder with radius R. A helix has constant curvature, so that Eq. (6) can easily be 

integrated. For 0en  one gets   
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
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

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






 







22
0220

2
exp

2
exp

hR

R
FL

hR

R
FF .    

 

h is the height of one complete helix turn by 2 , called pitch. It is interesting to note that for 

a fixed angle   (as the angular coordinate of the cylindrical coordinates it is equivalent to   

of the planar case), the friction vanishes for large h. Although the contact length L  increases 
with h, it is overcompensated by a diminishing curvature. This is the reason why two identical 
knots, the one that is tied stronger and therefore smaller in size, have a larger holding force. 

For the estimation of Φ  it is sometimes useful to divide the space curve piecewise into a 
polygon lying in different oriented planes. The total curvature is then the sum of the angles 
between subsequent line segments using the dot product. 
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3. The analysis of a knot 
 
In this section, a general procedure for the calculation of the forces in a knot is presented 
using the results of the last section. 
 
First the knot is decomposed into suitable segments which are determined by their mutual 

contact points (see Fig. 3). For example, the segment 34  in Fig. 3 is in contact with the 

segment '3'2  of the other strand, but touches also segment 01  of the same strand. But '3'2  

is only in contact with 34 . The endpoints of these segments are labeled and the forces Fn 

together with their directions are assigned to them. One starts with the known pulling force F0 
as input and ends at the endpoint of the knot with the holding force Fn as output. Superfluous 
node points do not change the analysis. 
Symmetry operations like reflections and rotations which leave the knot invariant reduce the 
number of unknown forces. So, for example, for the highly symmetric square knot of Fig. 3, 
the number of unknown forces is reduced by a factor 2. The rest has to be determined by 
force equilibrium conditions.  
Choosing an appropriate coordinate system makes it sometimes possible to set up simple 
equilibrium equations for certain force components. For example, the forces in z direction in 
the white y’z-plane of Fig. 3 yield the normal forces on the compressed rope segments, as 
will be shown later.   
 
 
 

 
 

Fig. 3. Picture of a square knot. The division into 4 segments is shown for both 
strands of the knot (the segments of the left strand are indicated by primed 
numbers). The segment boundaries that are not visible because they are covered by 
knot segments above them are drawn with dots. Because of the rotational invariance 

around the C2 axis, the segmentation of the 2 strands is identical. The segments 12  

and 23  lie almost entirely in the plane Ey’z. The x’y’z coordinate system is rotated 
around z with the original y-axis lying in the drawing plane.  

 

The unknown forces nFFF   ,...  , 21  and the given pulling force 0F   form a system of linear 

force balance equations  
 

bFAF 0                       (8) 

 
with the nn   matrix  
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The special form of A with only minus ones in the subdiagonal and with diagonal elements 

ieaii
 comes from the Euler-Eytelwein friction contributions between consecutive forces 

iF  and 1iF . b is a known vector with values resembling the matrix elements of A. In its 

simplest form, it is given by (1,0,0,…,0). b is multiplied with the known input force 0F . 

Interested in the holding force nF , application of Cramer’s formula yields 

 

)det(

)det(
)(

0 A

A

F

F
T nn   .              (9) 

 

nA  is the matrix A with its nth column replaced by the vector bF0 . T is called transfer function 

because only part of the input pulling force 0F  is transferred through the knot leading to a 

smaller output holding force nF . The total friction force in the knot is given by  TFFfr  10 .  

For   aij 0  except iia  and ,ii-a 1 , the transfer function is 
  eT )(  with 

i

i  as the 

total contact angle. e  takes into account only the contact between the complete rope 
strand and its touching counterpart or with itself. It is the trivial solution for T without 
additional compression forces. In other words, if there are only contacts between two rope 
segments, the Euler-Eytelwein equation is sufficient to calculate the forces at the ends of the 
segments.  
 
The general solution of Eq. (9) can always be written as 
 

)(1

)(1
)(




 

H

G
eT




 
          (10) 

 

with )det()(1 AeH    and  )det()(1 nAG   . 

 
Because T can never be larger than one, G and H are always nonnegative. The condition for 
self-locking is the existence of a critical μc that satisfies  
 

0)(1  cG  .           (11) 

 
The reversal of input and output force leading to a reversal of the impending motion is 
described by the transformation   . If the knot symmetry leaves the physics 

unchanged (that is, a symmetry operation can restore the same knot including the forces 
acting on it), one gets     
 

1)()(  TT ,          (12) 

 

from which )()(   GH  follows.  Therefore 
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)(1

)(1
)(




 

H

H
eT




 
.         (13) 

 
Thus, the self-locking condition of Eq. (11) is equivalent to an eigenvalue of  )( A equal to 

zero. 
 
Eq. (10) for T is reminiscent to Mason’s formula [10] from signal flow analysis which allows a 
graphical representation of the knot as a directed graph (an example is given in section 4). 

e  is the contribution of the forward path nFFF  ...10  touching all nodes. In signal 

flow analysis, G is interpreted as gains from additional forward paths and H describes 
feedback effects. To obtain self-locking, at least one additional forward path is necessary. 
 
 
4. The square knot and related knots 
 
The square knot is a simple, symmetric knot that many of us use every day. Because of 
some controversy about the comparison with its close relative, the granny knot, the square 
knot is of particular interest. 
 
 

 
Fig. 4.  The square knot with the forces Fn at positions n. For example, at the ends 

of segment 01  the forces F0 and F1 are present. This rope segment 01  is in 

contact with segment 12  with an additional force N on it. 
 
 
The square knot is indistinguishable from its initial position after a rotation about the axis C2  
(i.e. rotated by  ). This rotational symmetry reduces the number of forces and contact 

angles αi inside the knot.  
 
The αi have been defined by Eq. (7) as 
 


iarclength

i dss
0

)( .  
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In Fig. 4 the projections of these angles into the drawing plane are shown. Starting from the 
pulling force F0, the normal force N acts before the curved arc between 0 and 1 begins. 
Therefore by application of Eq. (3) one finds 
 

NeFF  21
10  .             (14) 

 

The rope segment 34  moves in the opposite direction of segment 01 ,  thus  

 

  1243

 eNFF  .             (15) 

 

For the segments 12  and 23 , where no additional normal forces are present, one has 

 

)(

2

3

1

2 32   e
F

F

F

F
.             (16) 

 
N lies in the plane Ey’z of Fig. 3 in z direction. In equilibrium, the forces must fulfill 
 

211132 sinsinsin   FFFN .           (17) 

 

Because of the knot symmetry, the angles 1   and 2   as projections of 1  and 2  into the 

plane Eyz are equal. The angle 3  completely lies in Eyz and given by 2 . Thus  

 

2FN  .              (18) 

 
Inserting this result into Eqs. (14) and (15) one obtains together with Eqs. (16)  
 

2

2

0

4

21

2 1
s

s

s

Φ

Φ

Φ

e

e
e

F

F
T

















  ,            (19) 

 
where the total contact angle  
 








 
2

2 21


sΦ              (20) 

 

has been introduced to eliminate the contact angles 21    . T is only a function of s  and 

  and it satisfies the symmetry relation (12). If the normal force N is neglected, one obtains 

seT   where only the total curvature enters for the resulting holding force. Self-locking 

occurs at c  as a solution of the equation 221
s

e






 . This result has been obtained by 

Maddocks and Keller [5] for 2sΦ . 

 

For an input force 00 F , all other subsequent forces are zero and therefore also the total 

frictional force. In this simple linear model there are no remnant friction forces which hold the 
force-free knot together, i.e. it disintegrates as soon as the external pulling-forces are absent. 
Actually, these remnant internal forces are small. This can easily be checked. For example, a 
tightened square knot that is shaken loosens. 

The complicated calculation of s  can be done only numerically. Because s  depends on 

how the knot is tightened, it is not an invariant of the knot. Thus, an estimate should be 
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sufficient here. The approach uses the numerically determined lengths 1.10otL  and 

37.16ctL  in units of the rope radius R of the open and the closed trefoil knot [11, 12]. 

Because the open trefoil knot can be assembled from the square knot and a helix segment 
with pitch 8∙R (see Fig.5), the following equation 
 

ot

otct

otct
ototots L

LL

ΦΦ
LΦΦ















 




2

2

8
1

 

 
is obtained, where it was assumed that the mean curvatures of the open and closed trefoil 

knot are equal. The difference of the two contact angles is 2 otct ΦΦ , so that the result  

for the square knot is  60.2s . A very tight square knot has a maximum 3max sΦ .  

 
 

 
     Fig.5. Picture of the open trefoil knot. It can be assembled  
      by the yellow segment, the blue segment and a segment 

identical to the blue obtained by rotation about C2 (not shown). 
 
 
Some new insights can be gained by the representation of the knot using signal-flow analysis 
[10]. In Fig. 6 the signal-flow graph of the square knot is shown. The set of linear equations is 
equivalent to a directed graph which shows the dependency between the forces in a 
transparent way. F0 is the input node and F4 the output node. Besides the multiplicative gains 

a,b,c,d between successive nodes, the interesting parts are the feedback gain fb   and the 

feedforward gain g which are responsible for self-locking. Mason’s gain formula as the main 
result of signal-flow graph analysis immediately gives Eq.(19). 
 

 

 
 

Fig. 6. The signal flow graph of the square knot. The coefficients which connect the 

nodes are given by   
2,2,, 1311 )(  

gefecbeda  . 

 

F3 F2 F1 F0 a b c F4 d 

f 
g 
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The granny knot 
 
Like the square knot, the granny knot is invariant under a rotation about the axis C2. Because 
of that strong resemblance, the analysis of the granny knot follows the same steps as before 
for the square knot. 
There is also a normal force N that presses the two inner rope segments together. Therefore  
Eq. (19) is also valid for the granny knot. However, it has to be taken into account that, 
because of its smaller structural stability, the granny knot needs to be tied more carefully 
than the square knot. Having the same T as the square knot, the granny is also a stable knot, 

but there is a major difference to the square knot, namely its smaller contact angle g .  

 
 

 
 

     Fig. 7. Picture of the granny knot seen from above.  
     It consists of two mutually perpendicular loops that  
     are almost planar. 

 
 
In contrast to the square knot where the rope strands form a space curve, the loops of the 

granny knot lie almost entirely in a plane (see Fig. 7). This immediately leads to   2g . 

Again, the comparison with the open trefoil knot allows to determine the contact angle gΦ . 

The trefoil knot can be divided into two circular sectors each representing the contact angle 

g  so that 

 

 61.1
2

1
 ototg L . 

 

A very tight granny knot has a maximum 2max gΦ .  

The difference in the contact angles s  and g  significantly affects the range in which the 

knots are stable and secure.  
This can be shown by a sensitivity analysis of the transfer function T. The starting point of the 

analysis is a rope with a certain c   which is tied to a stable square resp. granny knot. 

Now small changes in the contact angle are assumed occurring for example when the input 

and output force change slightly their direction. What perturbation in Φ can still be accepted 

so that the knots remains stable? The sensitivity of T against variations of Φ is extreme in 

the neighborhood of that Φ for which the knot becomes unstable, i.e. 












2

1
ln

2
)(cΦ . 

δ 
Φg 
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The sensitivity of T,   
)

1)

T(ΦdΦ

T(Φd
ST

Φ    decays on a scale of 
2

1
. As a measure of 

security, the relative, barely tolerable perturbation ),(  Φ  is therefore given by 
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In case of the square knot, %38)3.0,6.2(   s  is obtained. For the granny knot, 

however, the corresponding result is %1)3.0,6.1(   gΦ . Thus, 3.0  is not large 

enough for a secure granny knot. 
 
 
The theft knot 
 
If one swaps F0 and F4 of the square knot (see Fig. 4) on the right side of the node, a new 
configuration is created, called theft knot. The corresponding case starting from the granny 
knot is called grief knot. Because the two strands of the knot are not in a line, a shear 
movement is created.  
 
 

 
Fig. 8. Theft knot with a force couple F0 which creates 
the shear angle η and with the directions of the occuring 
forces in both knot strands.  
  

 
This movement stops for a certain shear angle η when the external torque created by the 
force couple F0 becomes zero. The corresponding equilibrium condition to Eq. (17) is 
changed and a much smaller normal force N results.  In addition, the number of compressed 
parts which move against each other is reduced by a factor two. As a consequence, the theft 
knot is unstable. Its transfer function is given by  
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The zero in the numerator for a critical disappears for small angles η < 10° (using  

η 
F0 F0 
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Φ =2.6π). However, the resulting η which is determined by the equilibrium condition of a zero 
torque is about 20°.   
 
 
 
 
Clove hitch and Munter hitch 
 
The clove hitch is used to tie a rope around a pole (see Fig. 9). It is part of a granny knot and 
therefore its transfer function is given by    
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Fig. 9ab. Picture (9a) of the clove hitch in comparison with the granny knot (9b). 
 
 

One has to distinguish between two different contacts with two friction coefficients   and p  

between rope/pole and rope/rope. The contact angle with the pole is πp 2  and the 

contact angle Φ  between the different rope parts is half of the granny knot (see Ref. [13] for 

a more accurate estimation of Φ  and pΦ ).  For the same friction coefficients   p , its 

stability is approximately equal to that of the square knot. 
 
The munter hitch, sometimes called half clove hitch, is an unstable knot because there are 

no sandwiched rope segments. It is approximately given by the first term of chT  

 
  ppeTmh .                       (23) 

 
 
5. The Zeppelin knot 
 
The Zeppelin knot is a symmetric, but complicated looking knot with some new features. 
There are three compressing normal forces which lead to a very stable knot.  
The determination of the contact angles is simple because the knot has essentially full or half 
turns of its strands. 
Applying the procedure of section 3, the following equations are obtained 
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  011 FNFe  
                       (24) 

2
112


 

  eNeFF                          (25)             
 eFF 23 .                                    (26)

   

Eq. (24) describes the forces on the rope segment 01called A (Fig. 10a). For impending 

motion, its direction equals the direction of segment B. Therefore the friction contribution due 
to the compression force N1 is only counted once. There is a small contact angle γ shown in 

Figure 10b. Eq. (25) follows the same reasoning. The contact angle of the segment 23  is 

given by π, which leads to Eq. (26). 
The equation which is mainly responsible for the high stability of the Zeppelin knot is given by   
      

32
2

34 22 NNeFF 






.            (27) 

 

The segment 34  is compressed by two force pairs (one is indicated by the arrows in Figure 

9b) and the segments 34  of both strands move against each other. 

The force 3F   on A in perpendicular direction is balanced by the opposite force N1, thus   



2

331 eFFN  .            (28) 

 

F3 is smaller than 3F   by an Euler-Eytelwein factor with angle π/2. The remaining forces N2 

and N3 are obtained considering the force balance in horizontal direction at C (Fig. 10b) with 
the result   
 

32132 FFFNN  .           (29) 

 

    
Figure 10ab. The Zeppelin knot viewed from above (10a) and from the side (10b).   
 
 

From the Eqs. (24) – (29), the transfer function can be calculated with the result 
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Because   is small, the contact angle can be approximated to 
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6. Comparison with experiments and summary 
 
In the following table, the results of the previous sections are summarized. 
 

knot M Φ  c  )08.0(1 T  measured T1  

grief knot Eq. (21) 2  75.135.1   unstable 71.155.1       1.0 ± 0.6 

theft knot Eq. (21) 2  75.235.2   unstable 21.299.1     2.15 ± 0.5 

granny knot Eq.(19) 4  26.1   26.024.0   34.210.2   2.5 ± 1.1 

square knot Eq.(19)  4  36.2   21.020.0   08.368.2   2.9 ± 0.5 

Zeppelin knot Eq.(30) 6 5.2  0.094 8.08     9.4 ± 1.5 

Clove knot Eq. (22) 4 75.2  0.2 3.08  

Munter hitch Eq. (23) 0 75.2  unstable 2.00  

Bowline [14] 2 5.1  0.36   

 
Table 1. Summary of the properties of the discussed knots. M is the contact number which counts the 
compressed knot segments by the simultaneous contact of three rope segments. The contact angles 

Φ of the grief and theft knot are smaller by about 42   , because these knots are sheared by the 

external torque which reduces Φ . The coefficient of friction for Dyneema fibres was assumed as 0.08.  
 
 
The experimentally determined friction coefficients by Crowell [7] that lead either to self-
locking or slipping agree with the theoretical results from table (1), column 4.  
 
The published experimental pulling forces for a given hold force by Patil et al. [7] are found in 
column 6. The theoretical results of column 5 can explain these measurements. 
 
Because of its practical importance, the difference between the glove and munter hitch has 
to be mentioned. The stability of the glove hitch is used by climbers and mountaineers. With 
the help of this knot, a safe belay is obtained without any rope slip under load. On the 
contrary, it is desirable that the munter hitch slips when a heavy fall occurs in order to control 
this fall. Experimentally, for a hand force of about 400 N, the rope begins to slip at about 

3000 N, that is 13.0mhT which is in agreement with Eq. (23) assuming reasonable friction 

coefficients for nylon ropes. This is an indication that the simple model of dry friction with only 
one parameter, the friction coefficient , is a sufficiently good approximation for the 

description of the friction inside a knot.  
 
Examination of the transfer functions of table (1) reveals the following general properties. 
First, although there are many angle variables in the force balance equations during the 

calculation, these angles often finally add and enter as a total in the contact angle Φ . 
Because of its few parameters and its transparency, the validity of the model can be easily 
checked. Second, Taylor expansion for small   yields 

 

  ΦMΦT 1),( . 

 
In this limit, T is determined only by two parameters, the (triple) contact number M and the 

contact angle Φ . 
M is twice the number of sandwiched segments which are compressed by opposing force 
pairs from surrounding knot segments and which move against each other. If the sandwiched 
segments move in the same direction, they are counted as one segment.  

For example, for the Square knot, the compression forces N (see Fig. 3), the segments 12  

and 23  press on the two segments 43   and 10   which move in different directions, which 
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gives a total of M = 4. In the directed graph representation (see Fig. 6), M corresponds to the 
additional number of arrows (besides those of the trivial forward path) which point to a node. 
For the stability of a knot, M has to be greater than zero. Its size strongly influences the 
holding force of a knot and is therefore very useful to characterize it. A similar number 
counting the crossings in the knot has been used to classify of a knot [7]. The crossing point 
number, however, is related to the knot length [15, 16], and is already included in the contact 

angle Φ . Φ contains the entire double contacts of the knot segments. Triple contacts are 
considered by the number M, so that the entire frictional contact inside a knot has been taken 
into account. Thus, a complete description of the holding force and the stability of a knot for a 
perfectly flexible and inextensible rope with dry friction has been achieved. 
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