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„Insanity is when doing the 
same thing over and over 
again and expecting different 
results." Albert Einstein  

 
Introduction 
 
It happened in a remote part of the Verdon Canyon. The author abseiled down a steep part 
of the cliff. The next abseil point according to the guidebook seemed too close to him and 
so he decided to rappel to the next one, about 40 meters away. The double rope was 
hanging away from the wall, but not so far that it seemed necessary to get into a swing in 
order to reach the belay – besides it wasn't that steep. Once on the height of the abseil 
point, he was about 1.5 meters away from the wall. That’s not much and with the help of 
his legs he was sure that he would reach the wall with a small pendulum swing. From 
observations of other climbers’ helpless attempts and from own fruitless efforts in the 
climbing garden he was aware that it would be difficult to oscillate with a larger amplitude 
on the freely suspended rope. The new experience was that almost no oscillation could be 
excited to reach the necessary several centimeters to the chains of the abseil point. 
On a child's swing, however, it is easily possible to set yourself in oscillations from the rest 
position without being pushed. This raises the question why this was impossible in the 
described case and why one ended like a “jambon dans le vide” away from the wall. Would 
a certain way of swinging have led to success, was it just incompetence, or is it in 
principle not possible to set oneself in a pendulum oscillation? 
 
This question will be answered below. 
From the point of view of physics, the climber hanging freely on a rope is a special elastic 
double pendulum. Although this is conceptually simple, it performs highly complicated 
movements at larger amplitudes and is a frequently used example of a chaotic system. The 
equations of motion are set up in the appendix and discussed in more detail in their linear 
form in the main part. What effect has the elasticity of the rope? Is it possible to stimulate 
elastic longitudinal oscillations rather than the desired pendulum motion? 
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Fig.: One of the craziest abseil points in the Verdon Canyon. Without  
swinging one remains away from the second abseil point by some meters 
and is still 70 m above the ground. The question is whether a pendulum  
oscillation of the rope can be excited in order to reach the wall. 
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A special elastic double pendulum  

 
 

          
 
 Fig.1a,b: Modeling the freely suspended climber as an elastic double pendulum  

 
The rope represents the first pendulum of the elastic double pendulum. Suspended at its 
pivot A, it can swing freely (see Fig.1) with the angle θ. It is elastic in longitudinal 
direction, has an unstretched length L, the spring constant k and is assumed to be 
massless. At point D, the rope is connected to the second pendulum, the climber K. He has 
the mass M and the moment of inertia J about an axis through his center-of-mass S and 
perpendicular to the image plane. K is assumed to be a rigid body, although K moves his 
hips and lower legs in order to rotate. The rotation around D is described by the angle δ 
relative to the first pendulum, since the movements of K are independent of θ. The pivot 
point D generally does not coincide with S and the distance between D and S is s. 
 
A similar double pendulum can be found in the work of W.Case and M.Swanson [1]. They 
discuss the excitation of a swing and the swinging person is modeled as a rigid barbell. The 
center-of-mass of the swinging person is above the pivot point, in contrast to the 
suspension point with a climbing harness. Further work on excitation of a swing are [2], [3] 
and [4]. [2] examines the standing position on a swing, [3] does without the mathematical 
apparatus of analytical mechanics and [4] is an experimental work (a swing length L ~ 
1.75m is used). 
 
The most elegant method to set up the equations of motion for this mechanical system is 
the Lagrangian formalism. This requires the Lagrangian function, which results relatively 
easily from geometric considerations. 
These calculations can be found in the appendix, together with the resulting equations of 
motion for the time evolution of the angle θ and the radial oscillation of the rope with the 
displacement x. In general terms, these coupled nonlinear differential equations have to 
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be solved numerically. However, since we are only interested in small angles θ, we can 
discuss them in a simplified form. 
 
This is obtained from equation (A.3) when also δ is linearized  
 

 MsgsLMsJsLMgJsLM  &&&& ))(()())(( 2                                      (1) 

 
On the right side of the equation is the driving force that arises from the periodic swinging 
back and forth of K around the point D at an angle δ. In contrast to the usual problem in 
mechanics with two degrees of freedom for the double pendulum, where both θ and δ 
satisfy an equation of motion, there is only one degree of freedom here, because δ is an 
“external” variable that is controlled by K. 
x does not appear in the approximated equation (1), so the motion of θ is completely 
decoupled from the elastic oscillation x. Since the pendulum length L >> s and the moment 

of inertia around S JML 2
, equation (1) can be further simplified: 
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This equation describes a harmonic oscillator with the eigenfrequency Lg1  and with 

a time-dependent driving force on the right side of the equation. An excitation of δ from 
rest is also possible for s=0, i.e. even if the pivot point is in the center of mass (see Fig.2). 
 
 

 
 

Fig.2: Conservation of angular momentum.  
From the starting position δ(0)=0, θ(0)=0 an angular momentum 
is generated when K is leaning backwards. Initially angular  

momentum is preserved, i.e.   02   && JML , therefore the  

pendulum first moves in the other direction.   
 

 
The pendulum excitation is necessarily periodic and since a negative δ is not possible, 
because this movement is blocked by the rope, δ varies between zero and a maximum δmax    
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The initial δ is 0)0(  , i.e. one begins in the upright, sitting position from the rest 

position θ(0)=0. If one choses )cos(~ t , then there is no driving force at all at the 

frequency  sLMJsg   that is close to the eigenfrequency of K, because the right side 

of (2) is zero. Thus starting wrongly from the horizontal, lying position (δ(0)=90°, θ=0) 
then there is no motion at all. 
 
With δ(t) from equation (3), the solution of equation (2) gives the motion of the angle θ(t) 
over time: 
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At the resonance frequency 1   this results in  
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The amplitude increases linearly with time and is independent of s. The rate )(t&  at which 

θ(t) increases has a strong L dependence 25 L . 

 
A comparison of θ(t) with the excitation function δ(t) shows how K has to move in order to 
excite the pendulum oscillation (see Fig.3). 

 

 
  

Fig.3: δ is plotted in red as a function of time t, with its maximum δmax=90°corresponding to 
the “lying” position of K. The blue curve describes θ(t) in response to the constraint F(δ(t)) 
in the resonance case. P1 and P2 are the zero crossings of θ(t). When moving forward at the 
lowest point P1, K is in a lying, horizontal position. When swinging back, K is in the seated, 
upright position at point P2. It can be shown that only the reverse swing is able to transfer 
energy to θ. 

 

A rectangular oscillation, as a 2π-periodic function )2()(   tt , leads to the same 

θ(t) at the same amplitude of the fundamental mode, since all higher harmonics of this 
oscillation do not contribute in the resonance case.  

 

P1 P2 

θ

δ 

t 



 

www.SigmaDeWe.com                                 © 2020 Ulrich Leuthäusser                           Seite 6 

If the resonance frequency is not matched, then the limiting case of a small, constant 

horizontal deflection maxmaxmax 2  sLy   is quickly reached which is independent of L, 

i.e. only about 40cm for s=15cm.  
 

Taking K as a physical pendulum, its eigenfrequency is DK JMgs , with 2MsJJD   

as the moment of inertia around D. MsJD  is often referred to as the reduced pendulum 

length Lr, i.e. as the length of the corresponding mathematical pendulum with the same 
oscillation period as K. 

From the literature 12J kgm2 for a body mass of M=70kg is obtained. K generates the 
deflection δ primarily with the movement of the hip by lifting the legs from the stretched 
position to a 90°- position and thus becomes a double pendulum himself. The synchronous 
movement of his lower legs supports the excitation.  

K can be excited particularly easily by K. K  in turn, in order to generate a relevant 

rope oscillation, must be in resonance with the eigenfrequency Lg of the rope. This rope 

length L is the reduced pendulum length Lr of K. With the above J and  

an assumed s=0.15m one gets 6.2K sec-1 and 5.1 rLL m. For such short rope lengths  

L it is easy to start an oscillation.    
In order to exite a pendulum oscillation for longer rope lengths, K must move at a lower 
frequency than his eigenfrequency. This is not easy, but with some skill possible. K only 
has to carry out the mentioned rectangular oscillation consistently and with the right 
timing. Children on the swing do that easily. However, K has the problem that, starting 
from the rest position, he does not know the eigenfrequency of the rope and is typically 

too fast because he prefers to oscillate at his own eigenfrequency K . Suppose K has a 

good sense of time and he matches  the eigenfrequency of the rope, then oscillation 
excitation is possible. But due to the small increase in rope amplitude over time for larger 
L, a lot of patience is required (see Fig.4) and one inevitably makes mistakes with the 
many repetitions that make it difficult to build up the oscillation. 
 
 
 

 
 
Fig.4: Solving equation (5) for t, one can calculate the 
required time t as a function of L for a certain ymax . 
For L=4m with ymax=1.5m you already need a minute.  

 
There are also other obstacles. So far, friction and the excitation of other oscillation 
modes have not been taken into account.  

   t[min] 
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First, the rope has frictional contact with its pivot which dampens the oscillation. When a 
slightly larger amplitude is reached, the speed of K is no longer negligible and one must 
take into account both the air friction of the rope and that of K.  

If a damping term  &  on the left hand side of the equation of motion (2) is added, then in 

the case of resonance a maximum amplitude (see ymax in Fig.1b) is obtained 
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The quality factor Q is given by Q . Q/2π is the number of oscillation cycles until 

the amplitude has dropped to 1/e. ymax is reached approximately after the time 

gLQ1 . 

Q can be easily estimated experimentally. This results in quite large Q values between 50 
and 100. The oscillation is therefore only weakly damped. If one assumes a quality factor 
Q=75, then at L=5m you still get a theoretical ymax~1.5m. But ymax goes to zero with 1/L. 
Thus even small frictional losses prevent oscillations with larger amplitudes. 
If K is not careful, he can easily stimulate the rotation around the main axis perpendicular 
to his mediolateral oscillation axis, which leads to a torsion in the rope and which 
complicates the correct execution of the rectangular swinging. Due to the small restoring 
torque, this rotational movement is low-frequency and easy to excite. 
 
Another source of interference are the longitudinal oscillations of the elastic rope. These 
displacements x are described in the linear case by the equation 
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with Mk2  (see appendix). Like the movement of θ, this is a harmonic oscillation and 

like equation (2) it is decoupled from the other coordinate. However, here the exciting 
force depends on s. If the pivot point D coincides with the climber’s center of mass S, then 
x cannot be excited. The solution for x can be found in the appendix (equation (A.7)). In 
the nonlinear force in equation (7), in addition to Ω, there is also the double frequency 2Ω, 

so that there are two resonance frequencies. In the case of frequency 22    one gets 
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In contrast to θ(t), x(t) depends on the square 
2
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2  for a climbing rope can easily be determined from its static elongation which was 

measured under UIAA standard conditions (indicated by subscript n). First the standard n2  

is determined with the help of Hooke's law nnnn LkgM  . With the standard values for the 

mass kgMn 80 , the rope length m.Ln 62  and %.n 58  (averaged over many 

different single ropes) one gets 
1

2 666  sec.n . This n2  obtained from a static 

measurement is significantly smaller than the "dynamic" angular frequency which is 
responsible for the strength of the impact force [5]. The generalization of the standard 

n2  to different M and L results in: 
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If the frequencies Ω and 2Ω  are now compared with the eigenfrequencies ω1 and ω2 of the 
rope as a function of its paid-out length L, the following situation arises, which is shown in 
the next figure.   

 

  
 
Fig.5: The eigenfrequencies ω1[sec-1] (blue) and ω2[sec-1] (red, solid)  
as a function of L. In order to excite the pendulum oscillation one must  
select Ω=ω1. For L=7m one gets Ω≈1.2sec-1. In this case of small L the 
frequency 2Ω that occurs in the force generated by K, is far away from the 
eigenfrequency ω2 . For “soft” (half) ropes however, ω2w is the red dashed 
curve. In this case, both oscillations are excited simultaneously.    
 

 
For larger L it is easily possible to excite the elastic oscillation instead of the desired 
pendulum oscillation ω1. With soft half ropes with significantly smaller ω2w, it is possible 
that both oscillation modes are excited at the same time.  
 
In rollover swings at fairs and in sports swings, the momentum is generated by the change 
between a standing and squatting position. The pendulum length is changed periodically, 
which is called parametric resonance, because one parameter of the oscillation equation 
(i.e. the pendulum length) changes periodically. This differs from the oscillator discussed 
here, which is driven by an autonomous force. 
Since the center of mass of K periodically moves up and down for s≠0, it is not surprising 
that this parametric excitation mechanism is also present in the general equation of 
motion (A.3) for the elastic double pendulum. 

The coupling terms of the form  &&2
,  &&  and  2

 (see (A.4), expanded for small δ’s link 
time-dependent functions with θ or its derivatives. These terms are all zero in the rest 
position and therefore you cannot leave the rest position with the help of parametric 
resonance. For small θ the coupling terms are very small and do not matter when exciting 
the oscillation from rest. 
δ either appears in its quadratic form or is multiplied by one of its derivatives. With 
periodic δ, this leads to excitation functions with twice the frequency (similar to the 
elastic excitation x), which in turn leads to completely new swing strategies. 
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Summary  
 
In summary, it can be stated that in principal a freely suspended climber can excite a 
pendulum oscillation from the rest position, but because of the very low excitation 
frequency of a longer rope, this only works relatively well with short rope lengths L up to 
approx. 2.5 meters. 
The correct way to swing is to take a lying, horizontal position when moving forward at the 
lowest point, be in an upright sitting position at the reversal point and to keep the upright 
position at the lowest point when swinging back. Other swinging techniques to excite the 
pendulum oscillation are not possible, because the parametric excitation mechanism only 
comes into play for large amplitudes. 
In general, the low resonance frequency, which is determined by the pendulum length L, 
must be strictly maintained, which requires a good feeling for the timing of the oscillation. 
And even if one is able to do this, friction losses due to the suspension of the pendulum 
and air friction prevent larger deflections. In addition, the pendulum amplitude increases 
only very slowly with larger L, so that a lot of patience is required. 
After a small fall under an overhang there is a good chance of coming back to the wall if 
one tries to amplify the pendulum motion as quickly as possible using the swing strategy 
discussed above and not waiting for the oscillation to attenuate. 
Already at a rope length of 5 meters, the author thinks that there is no chance to reach 
even a meter of deflection from the rest. Ambitious readers are encouraged to find out the 
rope lengths up to which they are able to put themselves into a relevant pendulum swing 
from their rest position (e.g. in the climbing gym). The author is looking forward to your 
feedback.  
In order not to get into the situation of hanging freely and motionless during an abseil 
maneuver, as soon as it becomes overhanging it is necessary to swing by pushing the legs 
off the rock, to clip quickdraws in hopefully existing bolts and to stay in a pendulum 
swinging by continuously pushing away from the wall. If it does happen, it’s not worth 
starting senseless attempts again and again and thus wasting power, it only helps to prusik 
(or to be rescued). 
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Appendix 
 

The Lagrangian function L
~

 [6] for the elastic double pendulum (see Fig.1b) is given by  
 

L
~

= kinetic energy – potential energy = 
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Here are:  
 
r=L+x the total length of the rope, composed of the unstretched length L and the 
elongation x  
 
M the mass of the climber K 
 
JD=J+Ms2 the moment of inertia around the pivot point D 
 
J the moment of inertia around the center of mass S 
 
θ the angle formed by the rope with the vertical 
 
δ the angle between K and rope 
 
s the distance between pivot point D and the center of mass S 
 
k the spring constant of the rope. 
 
 
The equation of motion for θ is obtained from the Lagrangian equations [6] for this 
coordinate 
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There is a linear coupling to the x coordinate through the term  && )cos(xMs . 

 

For 0r&  and small angles θ it follows from (A.2)  
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The equations of motion (A.2) and (A.3) are restricted by the (holonomic) constraint δ=f(t) 
and are equations for the variable θ alone with time-dependent coefficients given by δ. 
The terms of θ and its derivatives, which are linked to a time-dependent function and 
therefore are responsible for the parametric resonance, are  
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The Lagrangian equation for x is given by  
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For    and neglecting all quadratic and higher terms in &  and θ, one obtains  
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The solution for g=0 is 
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with Mk2 . The pendulum motion ))cos(()( max tt  1
2


  generates a non-linear 

force in (A.6), which also contains a term of twice the frequency 2Ω. This leads to two 

resonances, either 22   or 2 . 
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