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We present an approach using a utility function for a large class of risk-
averse investors who want to determine what fraction of their portfolio 
they should expose to risk. It is shown that even for long investment 
horizons the risky asset portion is relatively small, varying only between 
0.2 and 0.3 without depending much on the investor’s risk aversion.  

The utility function used consists of a linear component in the rate of 
return and a strongly decreasing component for negative rate of returns. 
The expectation values of the utility function are calculated with the 
probability distribution of a Geometric Brownian Motion, the common 
model of a stock market. Common quadratic approximations, i.e. an 
analysis by the mean value and the variance only, are not able to 
reproduce the results of this article because of the long-tail properties of 
the lognormally distributed rates of return.  

Furthermore, the same utility function is used for the selection of more 
complicated investments like discount or bonus certificates. Depending on 
the investor’s risk aversion, his "optimal" parameters like cap value, bonus 
level, etc. are calculated. 
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1. Concept 

The utility function concept1 is used to evaluate the outcome of a set of actions (different 

investment strategies). Each action aj from n possible actions results in a certain return 

1
w

)a(w
)a(R

0

j
j −=  and is valued by a utility function U(R). w0 is the initial wealth, and w(ai) 

the wealth obtained, if the action aj is chosen. R is a random variable with a probability 

distribution p(R|aj), conditionally dependent on aj. Taking into account all possible R’s, the 

conditional expectation E[U(R)|aj] for a given aj is given by 

 

∫ ⋅= dR)a|R(p)R(U]a|)R(U[E jj          (1) 

 

The best strategy aopt is given by 

 

( )]a|)R(U[Emaxarga j
nj1

opt ≤≤
=          (2) 

 

The action variable aj which here is assumed as discrete can also be continuous. U is defined 

only up to linear transformations, because b)R(cU)R(U +→ (c>0) leads to the same 

preference. This is reminiscent of describing physical systems in static equilibrium where U 

is the potential energy. 

 

U can be either a function of R alone or depends also on the initial wealth w0. For 

)Awexp()w(U −−= , for example, one obtains =−+−−=− )Awexp()Awexp()w(U)w(U 00  

( ) )R'Aexp(1)ARwexp(1)Awexp( 00 −−∝−−− , i.e. the parameter A’=Aw0 , the aversion against 

risk, increases with increasing initial wealth w0. In contrast one obtains for a logarithmic 

U(w)-U(w0) = )R1ln()
w

w
ln()wln()wln(

0
0 +==−  which depends only on the return R, 

independent of the absolute level of wealth.  

The so-called certainty equivalent C which solves the equation 

 

]a|)R(U[E)C(U =           (3) 

 

                                                 
1 for a more complete overview, see for example: 
Levy, H. and Sarnat, M., Portfolio and Investment Selection, Prentice Hall, 1984  
Berger, J.O., Statistical Decision Theory and Bayesian Analysis, Springer, 1985 



 

www.SigmaDeWe.com                    © 2011 Leuthäusser Systemanalysen                            page  3 
  

is an interesting concept and can be used to find the personal attitude to risk. For risk-

averse investors, U(R) is concave and therefore C is always smaller than E(R|a). C is the 

riskless rate of return which is equivalent to the risky E[R]. The difference  

 

Π=E[R|a]-C           (4) 

 

is called the risk premium which the investor is willing to pay to get rid of the risk. 

In order to get an approximate expression for П, the left hand side of (3) is expanded for 

small П: 

 

])a|R[E(UΠ
2

1
])a|R[E(UΠ])a|R[E(U)Π]a|R[E(U)C(U 2 ′′+′−≅−=  

 

and, by expanding U around E[R], the right hand side of (3) can be approximately written as  

 

])a|R[E(U
2

σ
])a|R[E(U]a|)R(U[E

2
R ′′+≅ . 

 

2
Rσ  is the variance of the distribution p(R|a). П can now be calculated and is given by 
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Expansion for small σR leads to the approximation 
])R[E(U

])R[E(U

2

σ
Π

2
R

attPr ′
′′

−= . Economists spend a 

name for this expression and call it Arrow-Pratt risk aversion function. It is important to 

note that these approximations must be applied carefully. Whereas (5) is exact for 

quadratic utility functions, Pratt’s approximation gives only poor results for large σ’s. For a 

lognormal distribution the expectation of the “Bernoulli” utility ln(1+R) is exactly known, 

i.e. *µ dR*)σ*,µ,R1()R1ln()]R1[ln(E ∫ =+⋅+=+ Ln , with the possibility to test the 

approximations. 

 

In the following we discuss the utility with aversion parameter B  

 

( ))BRexp(1
B

1
R)R(U −−+=          (6) 
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shown in Figure 1: 

 

 

 

Fig.1: A larger B leads to a stronger drop in U for negative R 
(red: B=10, blue: B=15, black: B=20). For positive R, the  
influence of parameter B is not very significant.  

 

 

We believe that the utility U for the discussed problem is only weakly dependent on the 

absolute w and mainly determined by R. There is a linear preference for positive returns 

and for larger B >> 0 a strong aversion for negative returns. The linear increase in R 

describes the attitude of an investor better than flattening U’s like the logarithmic one or 

the often used quadratic 2cR
2

1
R)R(U −= . The latter even decreases for larger R, 

unreasonably confining the investor’s preference for large returns. Using such a U, one 

already anticipates the statistical properties of R. Because a higher R is connected with a 

larger spread in its distribution function expressing greater risk, one obtains reasonable 

results for the expectation value of the utility. But then the modelling could be started 

directly with E[U] without an underlying U(R). 

 

The calibration of U(R) for a specific investor is possible in several ways. One possibility 

takes the opposite cases R =10% and R=-10% and estimates the investor’s advantage resp. 

disadvantage of these R’s. 

 

 
 
 
 
 
 
 
 
 
 
 

U(R,B) 

R 
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Fig.2: Absolute ratio of the utility for  
R=-10% and R=10% as a function of B 

 

If, in an absolute sense, the loss is as painful as the pleasure of the gain, we have a risk 

neutral investor (B=0). However, usually investors are risk-averse and typical values of B are 

about 13 (see Figure 2): the damage is about twice as high as the gain. 

 

 

2. Determination of the fraction of wealth exposed to risk 

In the context of portfolio selection an investor has to decide which part of his wealth 

should be exposed to risk in order to get an increased return. 

We assume that the price p1(t) of a stock market follows a Geometric Brownian Motion with 

the stochastic equation 

 

[ ])t(dWσdtµ)t(p)t(dp rr11 +⋅=         (7) 

 

Applying the Ito calculus, y=ln(p1(t)/p1(0)= ln(1+r(t)) has a Normal probability distribution 
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Thus r is lognormally distributed: 
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The relations 
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allow to calculate µr and σr from the input parameters E[r(ty)] as the mean annual rate of 

return and V[r(ty)] as the annual variance. 

 

The price of the riskless asset has the differential equation 

 

dtµ)t(p)t(dp 000 ⋅=           (9) 

 

Taking into account the inflation rate µi, we use the real, inflation adjusted rates ir µµ −  

and i0 µµ −  instead of the nominal rates µr and µ0 without introducing new variables.  

 

Assuming a portfolio of value w formed by the two assets with N1 units of risky asset and N0 

units of the riskless asset (e.g. saving account), the change of that portfolio is given by 

 

1100 dpNdpNdw +=           (10) 

 

for constant N0 and N1. This equation can be written as 

 

( ) [ ])t(dWσdtµ)t(p)t(xdtµ)t(p)t(x1
w

dw
rr100 +⋅+⋅−=                (11a) 

 

with the time-dependent fraction of the risky asset  

 

)t(pN)t(pN

)t(pN
)t(x

0011

11

+
=          (12) 

 

The exact solution of equation (10) for fixed N0 and N1 is obtained by writing it in the form   

 

1
1

0
0

dp
)0(p

)0(w)0(x
dp

)0(p

)0(w))0(x1(
dw +−=        (11b) 

 

which can be integrated: 
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or 

 

( )( ) )t(r)0(x1)tµexp()0(x1)t(R 0 +−−=         (12b) 

 

We know that R(t) is lognormally distributed, therefore 
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It is also possible to solve (11a) applying an additional steady control process for N0 and N1 

in order to get a constant x. After price changes between time t and t’=t+dt one obtains a 

new w(t’) and a changed intermediate x~ . In order to undo this change and to get x = const, 

N1(t’) and N0(t’) have to be modified in the following way  

 

)0(x
)'t(p

)'t(w
)'t(N

))0(x1(
)'t(p

)'t(w
)'t(N

1
1

0
0

=

−=
         (14) 

 

Note that the new N1(t’) and N0(t’) do not change w(t’) (otherwise a third component like 

cash would appear). 

Under these conditions the return of the portfolio R=w(t)/w(0)-1 (equations 11 with x=const) 

is lognormally distributed like r and given by 

 








 −+−+= tσx,t)xσ
2

1
µx)x1(µ(,1R)x|t,R(p r

22
rr0R Ln      (15) 

 

The expectation, variance and mode (the point where the probability density is maximal) 

are given by  
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The most probable return has a maximum at 
2
r

0r

σ

µµ

3

1
x̂

−
=  which is surprisingly independent 

of t. When Rmod(x) is plotted against the loss probability dR)x|t,R(p)x(P
0

1

Rloss ∫
−

= , one finds for 

small x a strongly increasing Rmod(x) with only a little change in Ploss(x). However, for larger x 

approaching x̂ , Ploss grows much more than Rmod leading mainly to higher risk without higher 

return. For the determination of the optimal x, Rmod is therefore not as appropriate as the 

utility approach. 

 

In Figure 3 several numerically calculated expectation values of U(R) (equation 6) 

 

∫ ⋅= dR)x|t,R(p)R(U]x|)R(U[E R  

 

are shown as a function of the portion x of the risky asset. 

The following rates of return (per day) have been used: µr = 1.501·10-4, µ0 = 2.787·10-5 

corresponding to annual rates of return (inflation adjusted) of 5.3% and 0.98%. The standard 

deviation is σr = 9.86·10-3 leading to an annual volatility of 20%. 

 

 

Fig.3: The expected utility has a maximum  
with respect to x which depends on the  
aversion parameter B (red: B=5, blue: B=10,  
green: B=12.5, black: B=15). t=2 years. 
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The red curve in the following Figure 4 shows the expected return of a 2 year investment as 

a function of the parameter B. An investor with a higher B is more risk-averse. Thus the red 

curve varies between a full investment (x=1) with an average return of the risky asset alone 

and an investment mostly in the risk-free asset with µ0. The blue curve is the certainty 

equivalent. For example for B=10, we have ( ) 1t)µx)x1(µ(exp]x|R[E roptopt0 −+−=  = 4.4% and 

CE=3.2%. Thus for this investor a riskless rate of return of 3.2% is equivalent to the expected 

E[R|x] = 4.4% which is only obtained on average and he would pay 1.2% in order to avoid the 

uncertainty.  

 

 

Fig.4: red: ]x|R[E , blue: certainty equivalent C, upper black:  

full investment E[R|1], lower black: E[R|0] as functions of B.   
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In Figure 5a,b the optimal x as a function of B are shown.  

 

Fig.5a: Optimal fraction of the risky asset x for different  
investment times (red: t=1y, blue: t=2y, black t=3y and 
magenta t=4y) and as dots the approximation (17) as  
a function of B.  

 

An approximation for xopt shown in the Figure 5a as red dots which is excellent for smaller 

returns resp. shorter investment horizons is given by  

 

2
r

0r
tµB

opt
σ

µµ

B

e1
x

0 −⋅+≅          (17)2 

 

For values of B smaller than 4 one obtains a full investment in the risky asset. However, in 

the relevant range of B (magnified in the following Figure 5b) there is neither a strong 

dependence on B nor a strong dependence on the investment time. Assuming a medium risk 

aversion which is valid for many investors, we have the important result that x varies 

between 0.2 and 0.3 with only a slight dependence on time. Although the expected return 

of the stock market is growing with time, the variance increases also, compensating the 

rising expectation. This differs from the popular and widespread opinion that high x are 

justified for long investment horizons. However, as can be seen from the approximate xopt 

(equation 17), an investor who expects a bull market in the next future with a higher than 

                                                 
2 The expression 2

r0r σ/)µµ( −  can be obtained immediately when an expected utility 

tσx
4

B
t)µµ(xtµ]U[E 2

r
2

00 −−+=  is used that consists only of the first two moments.  

B 

 
 
 
 
 
 
 
 
                                xopt 
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average return µr of the stock market will choose a higher optimal x, because x rises linearly 

with increasing µr. 

 

 

Fig.5b: Optimal x for several investment  
times (red: t=1y, blue: t=2y, black: t=3y,  
magenta: t=4y). The dotted curves are the  
corresponding approximations (17). 

 

 

3. Optimal choice between several investments 

So far we have determined the optimal fraction of one risky asset depending on the type of 

the investor.  

In principle, the next step should include several assets with the following optimization 

problem ))Rd)R(p)x|R(Uarg(max(xopt ∫=
rrrrr

, where the components of x
r

 sum up to one. 

Conceptually simple, but elaborate, we instead look for the best decision for an investor 

who wants to buy a specific security for a certain amount of money. One could argue that 

this money comes from the risky part and therefore the investor is risk neutral for that part. 

In this case U(R) is proportional to R, and therefore one should take the asset with the 

largest expectation value. But in general, the investor wants to choose between a wider 

range of B’s, keeping in mind that for this problem the aversion parameter B has to be 

adjusted and is usually smaller than in our first problem. 

 

First, we investigate discount certificates. The investor who wants to buy such a certificate 

has to choose a cap value according to his risk behaviour. A wide range of cap values is 

available, varying from low caps (simulating a saving account) up to large caps where the 

discount certificate is essentially equivalent to the underlying asset. Thus, the possibility to 

buy the underlying asset is included. 

B 

 
 
 
 
 
 
 
                                xopt 
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In Figure 6 a typical probability distribution PD(RD) of a discount certificate is shown. It is 

characterized by a delta function at the cap and a truncated Lognormal distribution left of 

it3. 

 

          Fig.6: Probability density of a discount certificate (red) and its  
underlying stock (blue) as a function of return R. 

 

 

In the next Figure 7 the expected utility E[RD] using PD is numerically calculated. Depending 

on the investor’s risk aversion parameter B, the maxima of E[RD] specify his optimal cap of 

the discount certificate. 

 

 

Fig.7: An investor with B=5 (red) buys the underlying asset. An investor  
who is more risk-averse with B=10 (blue) prefers a discount certificate 
with a cap value of about 0.9. An even larger B (B=12 black; B=15 green)  
shifts the maximum of the expected utility to smaller values of the cap cj  
(cj is normalized by the present value J of the underlying asset). 

 

                                                 
3 U. Leuthäusser: Theoretische Beschreibung von Discountzertifikaten, October 2010; 
http://www.sigmadewe.com/fileadmin/user_upload/pdf-Dateien/Theorie_Discountzertifikate.pdf  

R 
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EU(cj,B)
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Second, we shortly discuss the decision to buy a stock or a stock index directly or their 

associated bonus certificates. A bonus certificate is characterized by a bonus level b and an 

absorbing barrier a4. In Figure 8 the return probability distribution of a bonus certificate 

with its typical split distribution and the probability distribution of the corresponding 

underlying asset are shown. The parameters a=-0.45 and b=0.125 are a risk-averse choice 

which excludes completely moderate to high losses (unfortunately a small probability of a 

very high loss remains) and therefore only a low average return can be expected. 

 

 

Fig.8: Probability density of a bonus certificate (blue)  

and its underlying stock (red). 

 

 

In Figure 9 the utility of the underlying asset U and the utility of the corresponding bonus 

certificate UB (a=-0.45, b=0.125) is shown. For that choice of parameters the bonus 

certificate has an advantage over the underlying in a large range of B.  

 

                                                 
4 U. Leuthäusser: Theoretische Beschreibung von Bonuszertifikaten, February 2011; 
http://www.sigmadewe.com/fileadmin/user_upload/pdf-Dateien/Theorie_Bonuszertifikate.pdf  
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      P(R) 
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Fig.9: The expected utility of a bonus certificate (blue) and the 
corresponding expected utility of the underlying asset as a function  
of the aversion parameter B.  

 

 

 

In this paper we found that our utility function is very helpful for the composition of a 

portfolio. For typical investors it leads to rather small risk exposed parts of the portfolio 

which increase only slowly with the investment horizon. Furthermore, the last two examples 

show that the presented utility easily enables to assess even more complicated (option-

based) investments and to find out their appropriate parameters. 
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