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Introduction 
 
In a previous work [1] the behaviour of a climbing rope in the UIAA heavy fall case 
is presented.   

One result of this paper was that viscous friction can be approximately neglected 
until the force maximum and irrespective of nonlinear forces a harmonic oscillator 
model is a good approximation. 

On this basis it is shown in the following how a climbing rope behaves in the case of 
one or more protection points (usually bolts with quickdraws) between leader and 
belayer taking into account the so-called dry friction between rope and the 
protection points.  

It turns out that dry friction leads to the same form of equations and thus the same 
expressions for dynamic elongation and impact force as in the case without dry 
friction, if the elastic modulus is redefined properly.  

Furthermore the rope drag is calculated depending on the number of protection 
points and the angle deviations of the rope at these points.   

Other work on this subject can be found in [2] with a numerical simulation 
approach. [3] presents experimental data of drop tests.  

 

                                                   

[1] U. Leuthäusser, The physics of a climbing rope, www.sigmadewe.com/fileadmin/user_upload/pdf-
Dateien/Physics_of_climbing_ropes.pdf 

[2] M. Pavier, Experimental and theoretical simulations of climbing falls, Sports Engineering (1998) 1, 79-91 
[3] J. Marc Beverly, Stephen W. Attaway, Measurement of Dynamic Rope System Stiffness in a Sequential 
Failure for Lead Climbing Falls, http://www.mra.org/images/stories/members/Beverly_Sequential_Falls2.pdf 
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1. Friction between rope and protection points  (harmonic oscillator model) 
 
We consider the situation depicted in the figure below. The leading climber takes a 
fall of a distance 2ln above the last protection Pn-1. At the end of the fall when the 

rope begins to stretch he has a velocity 
n0

gl4v =  and his location is called xn.   

The rope responds to the fall with elongations xi at Pi (i=1, ..., n-1). The rope 
segments and their spring constants between Pi-1 and Pi are denoted as li and ki. 
Together with the friction constant µ the angle αi at Pi determines the friction 
force at this point. 
 

 

 

 
           Fig.1 
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To keep things relatively simple, we use a harmonic oscillator (HO) model with the 
Lagrange function   
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The coordinate x0 can be controlled by the belayer. For a static belayer x0 is zero. 
 
The Lagrange equations for non conservative systems are given by 
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with the dissipative forces   
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using the equation of Euler-Eytelwein (see Figure 2). Their dependency on the 
direction of motion is omitted here, thus they are only valid for short times 
including, however, the times of maximum elongation and acceleration. A more 
detailed discussion of dry friction can be found in appendix A.  
 
 

 
 
Fig.2. When a force F2 pulls a rope over a curved surface with  

friction µ, the force F1 on the opposite side is reduced and  

given by )µαexp(FF 21 −= . This force depends on the contact  

angle α between rope and surface (formula of Euler-Eytelwein),  
but not on the curvature of the surface. 

 
 
 
 
Equations (2) and (3) immediately lead to 
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This system of equations can also be obtained without the formalism of Lagrange. 
The last equation is a HO equation for the mass m. No other masses are involved, 
thus the equations represent the balance of forces at the protection points 
considering friction. 
 
It is possible to get an equation for the elongation xn of the form 
 

mg)xx(kxm 0neffn =−+&&             (5) 

 
from the system (4). In order to eliminate all the intermediate xi, we solve the first 
equation for x1, substitute it in the second equation which leads to  
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with the abbreviation )µαexp(ρ ii = .  Continuing this procedure one obtains  
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Comparison with equation (5) yields the effective spring constant 
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The ki depend on the lengths li:  
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where E is the elastic modulus and q the cross section of the rope. Substituting the 
ki into equation (5), it reduces to 
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with an effective rope length  
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that is always smaller than l. The formula for keff is very intuitive and can almost 

be guessed: if there is no friction (all ρi = 1), keff is given by  ∑
=

=
n

1i ieff k

1

k

1
,  the well 

known formula for springs in series. In this case we find the lowest possible value 
for keff = Eq/l, the spring constant of a rope with length l.  In the opposite case 

1ρ 1n >>−  of large friction (i.e. the rope is pinned at the last protection point) only 

the last part of the rope acts as an oscillator and keff obtains its maximum possible 
value keff = Eq/ln without any energy dissipation. In between, the spring constant  

kn-1 is replaced by a larger effective spring constant 1n
ρ − ·kn-1, kn-2 replaced by 

2n1n ρρ −− ·kn-2 , and so on. Thus dry friction always leads to a higher spring constant. 

Taking UIAA norm fall conditions, the spring constant is only slightly increased, 
because of the very small l1 = 0.3 m compared to the total l = 2.6 m 
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with  µ = 0.25 and α = π. Thus the error in neglecting the friction between rope and  

carabiner is about 6%. 
 

In the limiting case of infinite friction  ∞→µ  one gets  x0 = x1 = '  xn-1, which are 

not necessarily zero, because we have neglected the mass of the rope. Taking into 
account the rope mass the motion of x1 is prevented, i.e. x1 = '  xn-1 = 0. Because 
the rope is flexible, a rope feed from the belayer at x0 leads only to a slack rope but 
not to a motion of x1.  
 
Taking the expression for the impact force on a rope in the HO model [1] 
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an effective fall factor can now be defined as 
 

effeff

eff
l

h

l

l
ff ==  

 
where f = h/l is the usual fall factor without friction. Fmax with friction divided by 

Fmax without friction (leff = l) scales approximately like 1ll
eff

≥ . 

 
The frictional force on the last protection point n-1 is given by  
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For its maximum value  )e1(FF 1nµαmaxmax

1n
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− −=  and with typical values for µ = 1/4 

and αn-1 ≈ π, we find 
maxmax
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The corresponding fall factor is given by  
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For f = 1 one finds feff = 1.374. 
 

The maximum force on the belay 
max

B
F  can be easily expressed by the impact force 

Fmax  by eliminating all )xx(k 1iii −−  in (4)  
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The sum of all αi appear in the exponent, thus for high friction the exponential 

leads to a very small 
max

B
F : the impact force is distributed among the protection 

points and cannot propagate to the belayer. 
 

The maximum force on the last protection point (LPP) is given by 
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With the values above, we obtain  
max

LPP
F = 1.46 Fmax .  

Although Fmax of equation (9) is increased by dry friction, the factor )e1( 1nµα −−+  can 

overcompensate this effect and in total 
max

LPP
F  can be lower for moderate friction.  

 
 
Finally the fall factor for an entire climbing route is shown in Fig.3. We take case 6 
from Fig.4 of the next section. The length of each rope segment is li = 2m. All ρi are 
the same as in Fig.4 except with a very high ρ5=10 resulting in a high fall factor 
after the climber is beyond P5. Note the typical climbing situation which is most 
dangerous at the beginning of the climb before the first protection is reached. 
After clipping the first protection point the fall factor jumps to zero, then 
increases again after climbing away from the protection.   
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                     Fig.3: Fall factor as a function of rope length l of an entire  

climbing route with 6 protection points (case 6 of Fig.4). 

                                    Blue: the fall factor without dry friction, red: with dry friction. 

 

 
 
2. Rope drag  
 

It is also possible to calculate the rope drag, i.e. the friction of the rope plus its 
weight that the climber feels when moving forward.  

The force before P1 (coming from below) is given by )βcos(lγ 11  (γ = density·g is the 

specific weight of the rope), so that the force after P1, using the equation of Euler-
Eytelwein, is given by  
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which is larger than )βcos(lγ 11 . The force after P2 is the sum of T1 and the weight of 

the next line element l2 multiplied by 2µαe in order to overcome the friction at P2: 
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After Pi we have 
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Finally one arrives at the last Pn-1. The minimal drag force FD that the climber 
needs to move forward is now given by 
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or in a more compact notation defining an effective mass of the rope  
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In the case of no friction, if all ρi’s are one, FD is simply the weight of the rope γl 

multiplied by an average cosine: ∑
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If the βi, li and ρi are all constant, one obtains a drag force  
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which increases exponentially with the total angle nα. Under normal conditions 

when the α’s are small, FD is given by ( ))1n(211)cos(lFD −⋅+≅ µαβγ . For α = π/10, n = 

10 and µ = 1/4 the effective weight the climber has to pull increases about 35% 
compared to the case without friction.  
The next figure shows a rope with 6 protection points ρ1 - ρ6. The total angle 

deviation 4π4 ⋅  is the same in all 6 cases. In spite of the apparent equivalency, 

the rope drags are different. In case 1, only rope segment l1 has to be pulled 
through ρ1, ρ2, ρ3 and ρ4, all larger than 1. In case 6, however, the segments l1 - l3 
must be pulled through ρ3 - ρ6. Thus the rope drag is larger in this case, in contrast 
to intuition. 
 
 

 
 
  Fig.4: Six situations of rope drag with the same total friction  

  angle. Case 1 has the lowest rope drag, the following are in  

  ascending order ending with the highest rope drag for case 6.  

Taking for 22.1)4πµexp(ρ i ≈=  one obtains in case 1 an 

effective mass  roperope

eff m38.1m =  and in case 6  roperope

eff m73.1m = . 
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3. Conclusions 

 
In this work we derived for the HO model with dry friction an expression for the 
impact force (equation 9) for all kinds of climbing situations: with arbitrary 
protection points, friction coefficients, angles between rope and protection points. 
It turned out that the original form of the equations is unchanged, if one redefines 
the spring constant of the rope by introducing an effective rope length, which leads 
to an effective fall factor. Because of the easy explicit expressions one can 
calculate at once the impact force for many climbing situations.  

Dry friction leads first of all to a higher (stiffer) effective elastic modulus. Energy 
dissipation due to dry friction is smaller than the strong viscous damping which 
starts near the force maximum [1]: the reason why a rope has almost no oscillation 
is viscous damping and not dry friction. In the limit of infinite dry friction there is 
only energy dissipation from viscous friction.   

Furthermore we calculated the rope drag a climber has to overcome in order to 
move forward. Its only source is dry friction. It can also be expressed by an 
effective mass which is larger than the mass of the rope that has to be pulled by 
the climber. This effective mass depends exponentially on the sum of the angles of 
the direction changes the climber has made. “Early errors” not using longer runners 
to reduce the angles α at the first protection points are less severe than “later 
errors” which is in contrast to intuition.  
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Appendix A  
 
In this appendix we discuss the equations (4) for n = 2, i.e. for only one protection point 
P1, in more detail. This special case is important, because the last protection has usually 
the largest friction (α = π), and is therefore a limiting case of (4) when all αi can be 
neglected except of the last one.  
Assuming for the moment a small mass m1 at P1, one obtains from the Lagrangian 
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the following equations of motion 
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The friction force F1 is given by 
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with the sign function defined as 
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The frictional force at P1 always has the opposite sign of the velocity at P1, its magnitude 
is independent of the velocity, but depends on the maximum of the two forces acting on 
either side of P1.   

Equations (A2) must be solved with the initial conditions 
02 v)0(x =& , 0)0(x1 =& , 

0)0(x1 = , 0)0(x2 = . The initial velocity v0 after a fall of 2ln is usually sufficiently large so 

that m2g can be neglected.  
Let us discuss the time interval until the rope attains its first zero crossing, beginning with 

the first half 
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This time interval ends when the rope reaches its maximum elongation and impact force 

and during this time interval the following relations are valid 
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Taking F1 from (A3) one gets 
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and for m1 → 0  
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(see Figure 5). The second time interval 
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At the beginning of this time interval the velocities are zero, but we still have 

0xk)xx(k 11122 >>− . The total energy rate is given by  
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and can never increase. This can only be satisfied if 0v1 ≥ . Thus, it follows  

v1 = 0 at least as long as 11122 xk)xx(k >− . x1 is constant and there is no energy 

dissipation. That is very surprising and interesting. One could expect that the motion of x1 

begins again at the time corresponding to 11122 xk)xx(k =− . 

Numeric integration of the equations of motion, however, show that the time interval with 
v1 = 0 ends at a time t1 which is somewhat longer than the time corresponding to 

11122 xk)xx(k =− . At the time t1 the velocity v1 immediately jumps to  
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valid until the zero crossing of the rope elongation x2. 
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Fig.5: The blue curves are the elongations x1 (solid) and x2 (dotted) from 
equations (A5) as a function of time. The red ones are calculated numerically.  
Equations (A5) are exact up to the maximum of x1 and x2.  

 
 
A full discussion of dry friction is beyond the level of this paper and fortunately not 
particularly important here, because we are interested in the influence of dry friction on 
the maximum elongation and impact force which takes place at time T/4.  
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