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A physical model for walking uphill is introduced. It is based on simple 

principles like the conservation of energy and a force dependent 

efficiency coefficient. Excellent agreement with experimental data was 

achieved.  
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Introduction 

In this work we present a physical model for walking uphill which includes not only the 

route profile but also such important variables as the mass and the power of the mountain 

walker. Starting with an equation for the mechanical power, which the mountaineer must 

exert, in combination with the efficiency of the muscle using Hill's equation of muscle 

contraction, a relatively simple formula of the walking time can be derived. 

This formula is compared with various other approaches. Among them is the purely 

empirical "Swiss formula" which is used to calculate the walking times for all Swiss hiking 

trails. As a side note, we mention that two articles in the German weekly newspaper DIE 

ZEIT were the original motivation for this work. In two successive articles two journalists 

and a mathematician tried in vain to get to the central point [1,2]. 

Finally we discuss the so-called zigzag transition which appears in all models and 

approaches that have a convex form for the walking time as a function of the gradient. 

 

 

The power balance for walking uphill 

In walking uphill, P is the mechanical power which you have to generate against a total 

force F which is composed of the component of gravity Fβ = mg·sin(β) and of the force 

component Fhor·cos(β) for walking horizontally (see Figure 1). The force for walking 

horizontally has a dissipative character, since the center of mass moves periodically up and 

down without regaining the potential energy in the downward movement. 

 

Fig.1 
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Thus the power balance is given by  

 

)βsin(mgv)βcos(vFv)FF(P horverthor +=⋅+=
rrr

               (1) 

 

It turns out, experimentally and also by models, that the force for walking horizontally 

varies linearly with the velocity, thus horhor mvλF = . Experiments show that the "friction 

constant" λ is about 4/3 sec-1 [4] and for the "inverted pendulum" model [5] one gets  
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With )βsin(mgFβ =  this leads to   

 

vF)βcos(mvλP β
22 +=                 (2) 

 

 

Force dependence of P and mechanical efficiency η 

Quite obvious, the power P which is generated by muscles depends on the applied external 

force F. This can be seen from the fact that beyond a certain maximum load the muscle 

cannot work at all. The velocity of contraction becomes zero. Thus, one can not keep the 

power P constant by decreasing v up to an arbitrarily small value when F becomes very 

large which, in principle, is permitted by the equation P = Fv. Also, for too small forces the 

power decreases, because a rapid muscle contraction is associated with a small exerted 

force. This leads to a maximum of P at an optimal force Fopt which is associated with an 

optimum muscle velocity which for example in cycling determines the optimal pedaling 

frequency. Mathematically, this is expressed by Hill's equation of muscle contraction 

[6,7,8]. This equation gives a relation between the velocity of the muscle contraction and 

the applied external force F 
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where vmax is the maximum velocity of contraction and Fmax is the maximum (isometric) 

tension generated in the muscle. b is a parameter that lies between 1 and 4.  
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To keep the description as simple and general as possible, we consider the region around 

Popt and expand the external force F at the optimal force Fopt that belongs to Popt (see 

Figure 2) 
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Thus, using optPηP = , one can define a kind of mechanical efficiency η:  
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Although η was derived by means of Hill's equation, it is more general, since η already 

follows from the fact that P has a maximum. η should not be confused with the energy 

conversion efficiency that describes the conversion of chemical energy into mechanical 

energy, which is about ¼. In the following we will use the last expression of (4) in order to 

avoid that the mechanical efficiency becomes negative. a can be expressed by Hill’s 

parameters Fmax and b and is given by 
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The last relation is true for b = 4. 
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Fig.2: Mechanical power from Hill’s muscle model (red curve) and the  

approximation optPη  from eq. (4) (blue curve) as a function of the external force F 

 

Inserting η in (2) leads to   vF)βcos(mvλ
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Since for larger β the velocity decreases sharply anyway, cos(β) is not particularly 

important. For simplicity, we set cos(β) = 1 and additionally assume that opthor FF ≈ . 

Although Fopt is slightly larger than Fhor for Fmax~ mg, the error you make by this assumption 

is small (see the flat maximum of P in Figure 2). One obtains 
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For β = 0 it follows 2
opt mvλP = , the power equation for walking on flat ground. Going 

uphill with the bike gives a similar equation as (6), if you firstly take into account that, 

except at very steep gradients, one always achieves the efficiency η = 1 (i.e. a = 0) by 

choosing the optimal gear, and secondly you have to add the air resistance as an additional 

force (multiplied by v) on the right hand side of (6). 

If the expression (6) is expressed by h, L and T, it follows 
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Solving for T one obtains 
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It turns out that, to a very good approximation, the efficiency η(h/L) under the root can be 

set to one so that (8) becomes even simpler: 

 























+







+









⋅⋅

= λ
m

P
4

L

h
g

L

h
g

m

P
)L/h(η2

L
)L,h(T

opt
2

opt

         (9) 

For h = 0 you get the walking time on flat ground which is given by 
optP

mλ
L)L,0(T = . The 

friction constant λ of the internal friction leads to longer walking times. Probably also the 

condition of the ground, which is an important factor while walking in the mountains, 

could be included in this friction constant as an external friction. T(h,L) at constant h/L is 

proportional to the walking distance L. Thus, keeping the gradient constant and doubling 

the walking distance L, leads to a doubling of the walking time. This certainly applies only 

in a specific time range, because fatigue effects must be considered for very short as well 

as very long ascents. In practice, constant speeds can be maintained over relatively long 

periods, if sufficient rests are taken, so that the above proportionality is valid.  

 

 

We now compare the walking time (9) with three other approaches from literature.  

1. The oldest relationship is a rule of thumb by Naismith which in its simplest form says: 

Allow 1 hour for every 4.8 km (originally 3 miles) forward, plus 1 hour for every 600 meters 

of ascent. Summarized in a formula, this means: 
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with 
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If one assumes a velocity independent force along the way and includes the gravitational 

force, then it follows in analogy to (1), )βsin(vmgvFvFP 0 +=⋅=
rr

, and solved for T  
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By comparison with (11) it follows 
mg

P
v vert = . With the default values P=125W and m=70kg 

one obtains vvert = 0.18 m/sec which is close to Naismith’ value of 0.17 m/sec.  

 

2. A simple exponential relationship is derived by Davey, Hayes and Norman [9], 

abbreviated herein as DHN, which is used in the work of Kay [10]. It is given by 
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which is only valid for gradients greater than zero. k is the only parameter which in the 

cited works was varied between 3 and 4. Here we use k = 3.9. 

 

3. Finally, we take the Swiss formula for comparison with (9). As already mentioned, it 

consists of a polynomial of degree 15 with coefficients Cj [3] 
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which is valid in a range 37.0L/h < .   

The advantage of the physical model (9) compared to the presented descriptive 

approaches is obvious: all variables have a meaning and influence the walking time which 
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can be studied experimentally. So it would be easy to measure the power as a function of 

T for a given gradient by using a treadmill. In addition, a mathematical structure has been 

generated which can be used directly for regression methods. 

 

In the following Figure 3, the three walking time formulas are plotted as a function of the 

gradient and compared with T(h,l) from equation (9).  

The Naismith curve (11), which is linear in the relevant range, kind of averages the convex 

curves and provides a rough approximation. The walking time from (9) coincides with that 

of DHN (13), if one chooses Popt = 150W, a = 4.5, and λ = 4/3 sec-1. Choosing Popt = 120W 

with the same a and λ, equation (9) can reproduce the Swiss formula (14). 

 

 

Fig.3: Walking times T in minutes for the different approaches as a function of  
the gradient for a distance L=1000m. Eq. (9) (red), eq. (14) (blue), eq. (13) (black),  
eq. (11) (green) and eq. (15) (magenta dots). For eq. (9) Popt = 120W was chosen to  
obtain a match with the Swiss formula. 

 

The walking time T does not only depend on the gradient but is determined by Popt/m and 

Fmax/m. In Figure 4 this strong dependence between the walking time and the power Popt is 

illustrated.  

 tan(β) 
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  Fig.4: Walking time T of eq. (9) in hours as a function Popt[W]. 
  With h=1000m and L=4000m a typical situation was chosen. 

 

In practice, you can estimate your own individual walking time Tind by means of (9) and the 

reference point T(Popt=120W) with the standard power Pst = 120W from the Swiss formula 

(therefore valid for Swiss hiking trails). Provided you know your own power Pind, Tind is 

given by st
ind

st
ind T

P

P
T ≈ . For other regions one has an analogous relationship with other 

reference points. 

 

 

Walking downhill 

Already a very simple approach can explain one part of the downhill movement. To 

maintain a constant velocity when walking downhill, a braking force mgsin(β) must be 

applied. For this purpose the power Popt is available, so that hmgPopt
&−= . 

Solved for the walking time, we get   

 

optP

hmg
T =                                           (15) 

 

The mechanical efficiency for the eccentric braking movement has been set 1. It is 

remarkable that this simple reasoning can explain the part of the Swiss formula for 

negative gradients larger than -20% (see Figure 3). 

Popt 

 
                   T 
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The transition region between T(h=0) and T(h/L≈-0.2) will not be analyzed in more detail, 

because in this work we are mainly interested in the uphill movement. One thing, 

however, is certain: the internal friction for the horizontal movement gradually disappears 

in the transition region, because the hip no longer has to lift against gravity, and thus 

eventually equation (15) alone determines the downhill walking times. 

 

 

Energy required and power components 

The relation optPηP =  can be associated with the required total energy (including heat) for 

the walking distance, because we have EηPηTE 1optmech == . If the two efficiencies η and 

η1 are proportional to each other, then also the total energy consumption E is proportional 

to the walking time T: 

 

ET ∝               (16) 

 

That conclusion is supported by the very good agreement with a measured curve for the 

total energy consumption (Llobera and Sluckin [11]), as can be seen in Figure 5 below. For 

comparison, the energy consumption for the efficiency η = 1 is shown as well which is 

significantly lower for large gradients. This strong increase in energy consumption for 

steeper gradients eventually leads to the yet to be discussed zigzag transition. 
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( 

 

 

Figure 6 shows the power components of walking for the ascent and for the horizontal 

component. For larger gradients the latter is fast approaching zero. 

 

 

   

 

 

 

tan(β) 
 

Fig.5: Energy consumption E [J] when walking uphill as a function of 
the gradient tan(β) for the model (9,16) (black curve) compared with 
[11] (red curve) and the energy consumption for an efficiency 1 
(dashed blue line). 
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tan(β) 
 

Fig.6: Total power (black curve) made up of the 
power for the ascent (red curve) and the power for walking 

horizontally (blue curve) as a function of the gradient. 
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The zigzag transition 

An interesting point is the so-called zigzag transition. Every hiker or ski mountaineer knows 

that above a critical gradient angle it is better to take a longer way (usually zigzag, see 

the following Figure 7) to achieve faster uphill walking times. Davey, Hayes and Norman 

[9], which we already have mentioned, probably were the first who published this. Later, 

M. Llobera and T.J. Sluckin [11] paid more attention to the zigzag transition.  

 

Fig.7: Zigzag transition on the way to the Stripsenjoch (Wilder Kaiser, Austria)  

 

 

Fig.8 : See text. 
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One proceeds as follows: zigzag paths with a path length 22 Ls4L +=′  are allowed where 

s is the side length of the yellow rectangle in Figure 8. L' is inserted into equation (9). Now 

we examine whether there exists a s > 0 above a certain hc/L = sin(βc) which leads to a 

shorter walking time than for s = 0.  

Figure 9 shows the transition to s > 0 which has been determined numerically. 

 

 

 Fig.9: Abrupt onset of a detour, 
 described by s, above a critical 
 gradient angle βc 

 

Expansion for small s leads to the relation 2

1

c)hh(~s − . This is quite analogous to the 

Mean-Field Theory for phase transitions (where s plays the role of the order-parameter and 

hc the role of the temperature). This is also demonstrated in Figure 10 where the time 

which has to be minimized (in statistical physics this would be the free energy) is shown 

for two different gradients. While for smaller gradients the minimum of T is at s = 0, the 

shortest walking time for larger gradients is achieved by making the "detour" s > 0. 
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   Fig.10: Walking time for 2 different gradients. 
   The red curve is below the critical gradient with the 
   minimum at s = 0, the blue curve is above the critical 
   gradient with s ~ 500m which extends the path of  
   L = 1000m to about L '= 1400m. 

 

The critical angle βc = arcsin(hc/L), at which the zigzag transition occurs, can be calculated 

exactly for the walking time formula (9). It is given by  
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As expected, the transition disappears for a → 0, because then the efficiency coefficient 

approaches one and no longer depends on the force. Remarkable is the relatively weak 

dependence of Popt (see Figure 11). Over a wide range 100W < Popt <300W the zigzag varies 

only slightly and lies between 13 and 16 degrees. 
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 Fig.11: Critical gradient angle (17) in degrees  
 as a function of the power parameter Popt. 

 

In the Swiss formula the zigzag transition occurs at an angle of 13.8° which corresponds to 

a gradient of 24.6%. The transition of DHN is at 15.4°. 

It is important to mention that the Swiss formula has no zigzag transition for walking 

downhill. Walking times that are quasi linear in gradient, which is also true for the 

Naismith rule (11), have no zigzag transition. 

 

Conclusion 

In this work we derived an equation for the ascent times in mountaineering based on 

simple principles like the conservation of energy and with a gravity-dependent efficiency 

coefficient that was derived from Hill’s muscle model. Mechanical models à la "inverted 

pendulum", when generalized to gradients, can not explain the observed walking times. 

Their gradient contributions to the walking time are too small. 

The model reproduces all important physical limiting cases. The equation for the walking 

time was successfully compared with several descriptive approaches based on 

measurements. The necessary power parameters are plausible in a range between 100W 

and 150W. As expected, the walking time T depends not only on the gradient, but is 

largely determined by the individual characteristics Popt/m and Fmax/m of the mountain 

walker (see Figure 4).  

The model shows a zigzag transition at a critical gradient angle which is quite insensitive 

to the available power and lies between 13 and 16 degrees. 

Popt 
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